首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为得到高煤阶储层煤层气井排采的压力-产气-产水动态平衡关系,揭示不同压力控制下的煤储层煤层气井排采的流体效应及机制,以沁南地区X1和X2煤层气井为研究对象,在X1煤层气井排采阶段划分的基础上,分析了不同压力条件下的煤储层煤层气井排采解吸规律及流体效应;研究了不同排采阶段的套压、动液面高度、井底压力及枯竭压力与产能的关系;数值模拟了X2煤层气井在压力控制前后的产能变化特征。结果表明:煤层气井排采的流体效应取决于是否对排采见气初期套压进行控制,排水阶段结束后采用蹩压、控压的排采制度,可有效提高煤层气井的产能。  相似文献   

2.
沁水盆地南部煤层气井排采动态过程与差异性   总被引:5,自引:0,他引:5       下载免费PDF全文
李国富  侯泉林 《煤炭学报》2012,37(5):798-803
针对沁水盆地南部煤储层变质变形的特点,通过对沁水盆地南部某井组的排水采气动态过程与差异性进行分析,结果表明:井组单井之间气产量变化大,排采效果差异性明显,单井产水能力不一;在煤层气井排采过程中,为防止吐砂和压敏效应,排采强度、制度调整不易过大、过频;在煤层气井排采的不同时期应采用不同的工作制度,在以排水为主的前期排采阶段,排采工作制度以控制动液面为核心来制定,在产气为主的中后期稳定生产阶段,排采工作制度以控制套压(井底流压)为核心来制定;煤层气井生产过程中,在保持一定回压确保煤储层安全的前提下,应尽可能降低套压生产,以利于煤储层平均压力的降低,扩大煤层气的解吸范围,获得高产气。  相似文献   

3.
煤层气井原有的开发模式是以直井+抽油机的模式,随着煤层气排采技术的不断提高,多分支水平井技术是近年发展起来的一种集钻井、完井与增产措施于一体的新技术,特别适合于开采低渗透储层的煤层气,常规的管式泵+抽油机、螺杆泵、潜油电泵在水平井排采中逐渐显出诸多局限性,射流泵成为水平井排采的关键设备,然而射流泵控制复杂,需要控制注水压力和井底流压,控制不好气量会大幅波动,依托自动化系统,同时对水平井排采深入研究,建立了一套"双回路单PID控制"煤层气水平井智能排采控制技术,现场应用控制精细,气量平稳。  相似文献   

4.
为了建立适合延川南煤层气田深部煤层气藏的排采制度,一方面通过镜质组反射率测试、压汞试验和核磁共振试验等手段,分析了延川南煤层气田煤层孔隙性发育在各煤阶煤层中所处的水平;另一方面主要通过与沁水盆地南部煤层孔隙发育、地应力特征、煤岩力学特征进行对比,分析了延川南与沁南煤层气地质条件差异,并结合延川南煤层气井现场排采参数,建立了相适应的排采制度。结果表明:延川南煤层气田煤层镜质组反射率在2.5%左右,压汞孔隙度和可动流体孔隙度在所有煤阶中处于最低水平,且孔隙系统以微小孔为主,各级别孔隙间连通性差,对煤储层渗透性极为不利;与沁水盆地南部相比,延川南煤层气田煤储层具有孔渗性差、地应力高的特点,加之煤岩本身抗压强度低,所以在排采控制过程中要采取比沁水盆地南部更为缓慢的排采制度;将延川南煤层气田深部煤层气藏排采制度划分为5个排采阶段,分别是:快速降压阶段、稳定降压阶段、上产阶段、产量波动阶段和稳产阶段,其中快速降压阶段日降井底流压控制在0.100 MPa左右,稳定降压阶段、上产阶段和产量波动阶段要采取精细化排采控制,稳定降压阶段日降井底流压在0.003 MPa左右,上产阶段日降井底流压0.005 MPa左右,产量波动阶段日降井底流压要控制在0.003 MPa左右。  相似文献   

5.
为给煤层气U型井排采制度的制定和优化提供依据,在分析柿庄南区块煤层气U型井排采典型阶段指标的基础上,提出研究区U型井排采过程可以划分为单一排水阶段、波动上升阶段和高产稳定阶段。在排采过程中,分阶段选取初始见气时间、初始累计产水量、初始降液幅度、初始降液速率、初始排水速率、波动上升时间、套压波动范围、液顶平均距离、典型高产日产气量、典型高产日产水量、典型高产套压、底液平均距离作为典型指标。根据以上分析结果,建议第1阶段应控制初始降液速率在5 m/d以下;第2阶段应控制套压在0~0.45 MPa波动,同时控制动液面维持在煤层顶板以上10 m之内;第3阶段应控制典型高产套压稳定在0.01~0.03 MPa,动液面稳定在煤层底板附近。  相似文献   

6.
为了制定与土城区块煤层气合采井相适配的排采制度,基于土城区块煤层气地面抽采示范工程,结合合层排采理论与COMET3数值模拟方法,分析了区块内煤层气地质条件及生产井排采曲线特征,划分了煤层气合采井产出的5个阶段,探讨了合层排采工艺优化措施。结果表明:初期排水阶段应严格控制排水速率,保持液面高度大于450 m、流压高于4.5 MPa;憋压阶段注意控制憋压幅度,在预留一定液面高度基础上憋压;控压产气阶段重点控制流压降低速率,模拟结果显示流压日降幅控制在0.010~0.015 MPa/d排采效果最佳;控压稳产阶段动液面在第1层段停留时间不宜过长,可在0.5 MPa套压下主动缓慢暴露上部产层;产气衰减阶段需维持第3压裂段流压稳定,模拟结果显示0.7MPa作为稳压值将更有利于产气。  相似文献   

7.
煤层气排采通过控制井底流压,实现稳定连续排采。通过现场实践,提出了只通过控制液柱高度实现井底流压精确控制的低恒套压下井底流压控制方法及控制技术。在煤层气井整个排采过程中,不控制煤层气井产气量,产气阀门完全打开,套压基本与管压相等,维持一个相对低且稳定的状态,仅通过控制液柱高度实现井底流压控制,此种控制模式即即为低恒套压排采模式,此种排采方式完全取缔了传统的角阀控制,依托自动化系统,采用智能排采技术和智能间开技术,精准的控制井底流压,从而保证煤层气井平稳运行,减少了煤层气井排采控制参数,排采控制更简单,问题出现更容易判断,处理更高效。  相似文献   

8.
精确的动液面数据是煤层气井定量化排采管控的关键生产参数,动液面的高低严重影响单井的产气效果。本文从分析动液面现场测试、动液面数据的计算、音速值的设定三个方面,详细论述了其对煤层气井动液面精度的影响,并根据煤层气井液面浅、要求精度高、连续监测的特点,提出了一套适合煤层气井现场要求的测试计量方法和音速值的选定,提高动液面测试的精度,为煤层气井定量排采控制提供保障。  相似文献   

9.
煤层气井合层排采控制方法   总被引:11,自引:0,他引:11       下载免费PDF全文
以铁法盆地大兴井田合层排采工程井DT31井和沁水盆地南部单层排采井QS1井排水产气特征数据为基础,分析了合层排采井各排采控制阶段的流体相态特征与单层排采的异同,总结了合层排采中的层间干扰因素及排采工艺中存在的问题,探讨了单位井底流压降幅的产水量和套压作为排采控制指标的控制方法及原理。研究结果表明:不同液面深度下的单位井底流压降幅的产水量可指导制定合排期间的排水强度;合采井深部产层的临界解吸压力液面深度与顶部产层埋深重合,不适宜合层排采;憋压阶段套压的最大值主要受产层顶板埋深和初期排水降液面阶段的总压降值限制。控压产气期,采用阶梯式降套压法,同时需控制套压瞬时降幅和日降幅以防储层激动,合采井在控压产气和控压稳产阶段设置一个最小套压可以缓解产气期间液面深度与浅部产层埋深接近或重合引起的矛盾。  相似文献   

10.
为分析排采制度对高煤阶煤层气井产出效果的影响,以沁水盆地南部某地质与钻完井条件相似的51口煤层气井排采数据为基础,通过分析煤层气井生产特征,建立了动液面降低速率、单位降深产液量、动液面波动幅度以及停井时间等4个排采动态控制表征参数。表征参数与平均日产气量之间关系显示:解吸前液面降低速率越快、单位降深涌水量越大、停井时间越长、动液面变化越频繁,煤层气产出效果越差。要实现研究区高效排采,建议在初始排水阶段将液面降深速率控制在6 m/d以内,在投产后将单位降深涌水量控制在0.05 m~3/(d·m)以内,在稳产阶段和产量衰减阶段控制好排采强度、保持液面稳定和排采连续性。  相似文献   

11.
为了提高煤层气井排采管控的科学性,以沁水盆地南部3号煤为研究对象,基于储层气-水运移产出过程和相对渗透率特征,探讨了煤储层气水产出控制机理及其影响因素,通过开展不同尺度裂隙系统内气水运移实验,分析了各类气水产出影响因素的影响模式及主要作用阶段。以降低气水运移影响因素造成的储层伤害、减小各排采阶段渗透率损失为主要目的,建立了适应于沁水盆地南部高煤阶煤层气井的"变速排采-低恒套压"排采控制方法。研究表明,气水产出依次通过基质孔隙、微观裂隙、宏观裂隙和人工裂缝,期间受到毛细管力、有效应力、启动压力和气水相渗等4要素耦合控制,压裂增压后地层毛细阻力明显增大、排水降压后有效应力会导致裂缝闭合、启动压力使气体产出滞后、气水相渗影响流态的稳定。当气井处在不同的排采阶段时,影响排采效率的主控影响因素各不相同。可将煤层气井降压产气过程依据储层压力(Pc)、临界解吸压力(Pde)、见气压力(Pjq)与井底流压(Pjd)的关系划分为4个阶段,认为PcPjd时需要以0. 1 MPa/d的降压速度快速排采以迅速克服毛细管力,降低水敏伤害; PjxPjdPc时需要以0. 05 MPa/d的降压速度排采,避免裂缝过早闭合,降低应力伤害; PjqPjdPde时需要以0. 02 MPa/d的降压速度缓慢排采,减小气对水的抑制作用; PjdPjq时采用0. 01 MPa/d的降压速度提产,同时保持套压不高于流压的一半,保持一定压差克服启动压力。在沁水盆地南部樊庄-郑庄区块应用"变速排采-低恒套压"排采控制方法,对比邻近相同地质条件、开发技术的井,相同流压时日产气量提高至原方法的1. 4倍,日产水量提高至原方法的2倍,排采500 d后的累产气量增加近25%。4个排采阶段单位压降产水量均高于传统排采管控方法。  相似文献   

12.
范耀  张群 《煤炭学报》2018,43(5):1373-1380
在煤层气井生产中,生产周期性波动现象在顾桥井田地面煤层气井排采过程中被观测到,是何原因导致这种现象的产生以及如何进行预防,目前国内外还鲜有报道,开展这一问题的深入研究对碎软、低渗煤层高效开发具有重要意义。通过对煤层气井井底流压、地层产气量等生产数据的深入分析,将周期性波动内生产阶段划分为地层产量(井底流压)平稳阶段、地层产量(井底流压)下降阶段和地层产量(井底流压)升高阶段3个阶段;从气管线集输、数据采集仪器和煤储层3个角度出发,结合煤储层特征、储层改造及修井作业结果,分析得到气阻效应是导致生产周期性波动的主要原因,气阻效应的出现又引起了固阻效应,在两者的综合作用下,导致煤层中流体(水、气)流动不畅,出现生产周期性波动特征,并通过数值模拟方法验证了分析的正确性,最后针对造成生产周期性波动现象的原因,建议在该地区下一步的煤层气开发中,采用煤层顶板岩层代替煤层直接压裂,同时通过表面活性剂的优选、分层控压联合排采技术以及支撑裂缝中煤粉的适度产出等预防措施,达到减小气阻效应和固阻效应的目的。  相似文献   

13.
煤层气产量评价和预测是煤层气开发工程决策的关键基础。随机森林算法具有计算量小、精确度高的优点。影响煤层气井产能的参数包含地质参数、工程措施和排采工艺参数。煤储层地质参数分为动态参数和静态参数两个部分。静态地质参数由煤层的本质属性决定,如:煤层埋深、煤层厚度、地应力等;动态地质参数在排采过程中发生动态变化,如储层压力、渗透率等。排采工艺参数多为动态参数,主要受人为调控,如井底流压、套压、动液面深度、冲次、冲程等。当煤层气井完成选址、钻井、水力压裂等条件进入生产阶段,排采工艺参数对其产量影响至关重要。基于随机森林算法,分析了沁水盆地郑村区块15号煤层8口煤层气井的地质参数和排采工艺参数对产气量的影响,计算得到了排采工艺参数对煤层气井产气量影响的重要性指标排序,即流压套压动液面冲次冲程埋深。将煤层气井最近60 d的生产数据作为产气量预测的测试样本,其余历史生产数据作为学习样本。学习样本经过缺失值处理、异常数据处理后,输入至R语言中,利用随机森林算法对历史产气量进行拟合分析。综合考虑排采工艺参数和历史产气量的动态变化对煤层气井后续日产气量的影响,建立了煤层气井的产量模型。依据随机森林算法的分枝优度准则,预测了不同排采方案下的煤层气井日产气量,将预测值与测试样本进行对比分析。结果显示,日产气量预测值中95%以上的数据与实际产量数据(测试样本)的误差小于5%,这说明基于随机森林算法的煤层气直井产量模型具有较高的拟合及预测精度,为煤层气井产能评价和预测提供了借鉴。  相似文献   

14.
煤层气单井排采控压产气阶段的关键问题是如何合理制订排采制度。以贵州省织金试验区煤层气开发排采资料为依托,分析了织金煤层气藏特征,探讨了产气量、产水量、套压、液面深、井底流压等排采动态参数间的规律,提出了井底流压稳定值的计算方法,并研究了井底流压的控制,最后给出了适合该区块排采制度的建议。  相似文献   

15.
彬长矿区低煤阶煤层气井的排采特征与井型优化   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究我国西部侏罗纪低阶煤储层瓦斯的地面井排采特性及影响因素,以彬长矿区大佛寺井田煤层气井的地质资料、历史排采数据为基础,分析了该区块不同井型煤层气井的产水量、产气量的主要影响因素,并探讨了相关因素的主要控制机理。研究发现储层特性、水文地质条件是影响该区煤层气成藏的重要因素,在所研究的几种井型中,多分支井在该区有着良好的地面排采效果,其最高日产气量为16 582.3 m3,垂直井次之,而U型井则相对较差。排采数据显示井底流压与产气量呈指数关系,井底流压的减小,日产气量呈指数增加的趋势。在煤层气井不同排采时期,动液面高度对产气量的影响有着不同的作用规律,且对高产气阶段的影响更为显著。套压与产气量之间近似表现为线性变化的关系,但不同排采阶段二者线性关系的比例截然不同。在煤层气井的产气衰减阶段,多分支水平井的日产气量/累计产气量的比值与排采时间呈现为良好的E指数衰减关系,并以此构建了以日产量与累计产量之比和开发时间之间的关系为基础的煤层气井产能预测模型,拟合相关系数均高于0.848 2。  相似文献   

16.
为了解决沁水盆地南部1 000 m以深的煤层气产量普遍较低的问题,以柿庄北区块为研究重点,采用对生产数据综合分析的方法,对深部煤层产气特征、排采变化规律、不同产量的典型井生产动态进行了研究,提出了深部煤层气产能的关键影响因素。研究结果表明:深部煤层气日产气量多小于500 m3,见气时间为16~178 d,单排3号煤层的井动液面较低,合排3号煤和15号煤的动液面较高,井底流压1.70~2.59 MPa;影响产能的因素包括地质、工程技术以及排采3个方面,地质因素主要为煤储层渗透率较低、3号煤与15号煤合采或部分井距断层较近导致产水量较大,工程因素主要是部分井压裂未形成有效通道导致甲烷气体无法渗流,排采因素主要是指排采过程中停机频繁等导致排采不连续影响产气量。  相似文献   

17.
为深入分析煤层气井降压增产措施可行性并明确选井原则。通过建立煤层气井稳产期产能方程,分析了井底流压对煤层气产量的敏感性;并结合数值模拟方法,模拟柿庄南区块TS-1井降低井底流压后的排采效果。结果表明,对于已经投入排采的煤层气井,通过降低井底流压能够达到增产的效果,且当井底流压较大时,降低井底流压可获得较大的产气量增量。TS-1井累产气量比措施前可提高110×10~4m~3,增长幅度可达85%。结合柿庄南区块降压增产措施井,提出压降增产增加煤层气井产量的适用条件,即排采连续稳定,且作业前动液面与煤层顶板之间有一定的液柱高度。  相似文献   

18.
为了进一步认识煤层气排采过程中储层压降传递规律及其对煤层气排采的影响,在煤储层裂缝系统发育与分布特征观察研究的基础上,分别建立了煤裂缝系统及煤基质内压降传递地质模型,并分析总结了储层压降传递影响因素及其相互关系。结果表明:煤储层压降传递及动态变化主要受储层渗透率、含水性、含气饱和度、煤解吸/吸附特性以及井底流压影响,其中储层大裂缝系统内的压降传递主要与渗透率、含水性以及井底流压相关;而煤基质内的压降传递则主要与含气饱和度及煤解吸/吸附特征相关。鉴于储层压降传递及其影响因素在煤层气排采中的作用,提出煤层气排采前应首先掌握影响储层压降的地质参数特征;排采过程中井底流压的控制应充分考虑影响储层压降的各因素之间的联系。  相似文献   

19.
排水采气是煤层气开发技术的重要流程,直接关系到煤层气井投资的成败。本文根据煤层气井排采原理,分析了煤层气的产出过程,介绍了煤层气单井排采和井网排采的原理,并根据排采过程中产能变化,将排采划分为排水降压阶段、产量稳定阶段、产量衰减阶段等三个阶段。影响煤层气井产能的主要因素有煤储层压力、煤层厚度以及煤储层渗透率等。通过煤层气井产能的数值模拟,可以对煤层气井进行产能预测研究。  相似文献   

20.
 煤储层压力是影响煤层气产出的关键因素,查明煤储层压力在煤层气井排采过程中的传播规律对于煤层气的开发具有重要的指导意义。为此,本文在分析煤层气井排采机理的基础上,重点研究了煤储层压力在不同的煤储层边界条件和排采制度下的传播规律。研究表明:在不同的煤储层边界条件和排采制度下,储层压力传播形成的压降曲线各异;煤储层压力的传播过程可分为两个阶段,即压力传播到储层边界之前为第一阶段,传到储层边界之后为第二阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号