共查询到13条相似文献,搜索用时 62 毫秒
1.
2.
3.
为了研究滇东-黔西地区的多层叠置含气系统煤层气合采的产气特征,以4层合采方式为研究背景,利用大型多场耦合煤层气开采物理模拟试验系统展开3组不同层间压差条件下的定产煤层气合采物理模拟试验,研究了4个煤层在煤层气合采过程中的储层压力、瞬时产量、产能贡献率等参数动态演化规律。研究结果表明:在合采过程中,1号煤层的储层压力在11.5 min上升至1.1 MPa,出现明显的压力上升,这是由于煤层之间的储层压力差过大会形成层间干扰现象,使低气压煤层的储层压力上升,但该现象主要发生在合采初期,并随着合采时间的延长而减弱;在11.25 L/min的定产生产条件下,1-4号煤层的初始瞬时产量分别为-23.4、-1.6、9.3、18.3 L/min,因此当单层产气能力高于定产值时,高气压煤层的部分产气量通过井筒汇入低气压煤层,形成倒灌现象,且层间压差越大,倒灌的气量越大;在0.2、0.3和0.5 MPa的3种层间压差条件下,1号煤层在第10 min的产气贡献率分别为-3.2%、-10.4%、-16.9%,所以在合采初期,层间压差越大,对低气压煤层的产气的抑制作用越大;在稳产期内,不同储层压力的煤层产气呈现为一种"动态平衡"的产气特征,即当相对高气压煤层的产气能力不足时,相对低气压煤层的产气能力开始增加,从而维持稳定产气。 相似文献
4.
贵州小屯井田龙潭组煤系具有煤层数量多、煤层间距小、煤层厚度薄等特点,煤层气开发需以多层合采为主要方式;与单一厚层状煤层相比,多煤层合采易发生层间干扰,影响合采效果及资源动用程度。基于小屯井田钻孔岩性与含气性分析,识别出有利、较有利与不利3种煤岩层组合类型,考查各煤层厚度、埋深、含气量等特征,对比各煤层的煤层气资源条件,综合考虑储盖组合、含气性、渗透性、储层压力、地应力等因素,划分出Ⅰ(6上煤+6中煤+6下煤)、Ⅱ(7煤)、Ⅲ(33煤+34煤)共3套叠置煤层气系统;在此基础上,优化合采产层组合,并确定有序开发模式为优先开发上部产层组合(6上煤+6中煤+6下煤),其次为下部组合(33煤+34煤),最后考虑经济与时间成本确定是否单独开发7煤;确立了资源条件分析-含气系统划分-产层组合优化的多-薄煤层发育区煤层气合采层位优选思路。 相似文献
5.
煤层气藏多层合采的影响因素分析 总被引:1,自引:0,他引:1
针对煤层气藏多层合采井的一般模型,利用CMG软件对多层合采时地层系数、初始地层压力、初始含气饱和度以及解吸特性等因素的敏感性进行了分析,结果表明:各分层的渗透率、初始地层压力、初始含气饱和度对合采的产能有重要影响,决定了合采的合理性,而分层厚度、解吸特性对合采的影响较小。在此基础上,对H地区煤层气藏多层合采实例进行分析,当3#和5#层合采时,因两层渗透率、初始地层压力等差别小,合采效果好;当3#、11#合采时,因渗透率相差太大而导致合采效果差,表明煤层气合采具有一定的适应性。 相似文献
6.
7.
借鉴现有模型,建立了煤层与相邻砂岩储气层合采的三维气-水两相流动数学模型及数值模型,并结合韩城矿区煤储层以及砂岩层的实际地质资料,开展了煤层气与相邻砂岩储气层合采条件以及显著性影响因素的数值模拟分析研究。研究结果表明,砂岩层含水饱和度对煤层气与相邻砂岩气藏合采的影响最为显著,由此确定煤层气与相邻砂岩气藏合采的首要条件为相邻砂岩储气层不含水或微含水,且仅当韩城矿区内与5号煤层相邻的山西组底部砂岩层孔隙度达到5%以上时,才具备与煤层合采的意义,此时相邻砂岩层煤成气可成为煤层气井产能的有利补充。 相似文献
9.
10.
叠置含气系统煤层气开采物理模拟试验方法研究 总被引:1,自引:0,他引:1
为了研究滇东-黔西地区的多层叠置含气系统煤层气开采过程中储层参数和产量的时空动态演化特征,在多层叠置含气系统的特殊煤层气成藏模式和已有试验设备的基础上,对煤层气开采系统进行了改造和升级,煤层气开采系统由开采管、开采管路和气水分离器以及其他附件组成。建立一套集合材料选取、试件制备和煤层气开采的煤层气开采物理模拟试验方法,最后对试验系统和方法的优势、今后改进方向和适用条件进行了汇总。为了对开采物理模拟试验方法进行效果验证,以直井为例开展了叠置含气系统煤层气开采试验,研究了4个煤层在煤层气开采过程中的瓦斯压力、煤层温度、煤层变形、产量等参数动态演化规律。结果表明:瓦斯压力以井筒为中心近似呈现椭圆状,越靠近井筒区域瓦斯压力越小,反之越大,气体运移速度由近井段向远井段逐渐降低;煤层温度下降量在煤层内以井筒中轴线为起点呈圆弧状向边界递减,越靠近井筒区域温度下降量越大,反之越小;1—4号煤层在第360分钟的最终体积应变分别为0.000 67、0.001 09、0.001 17、0.001 54,初始瓦斯压力越大的煤层,其最终的变形量也越大,且初始瓦斯压力越小的煤层,体积应变增长速率变缓的时刻越早;瞬时产量曲线呈现在开采初期迅速达到峰值并急剧下降的单峰曲线类型。研究结果验证了叠置含气煤层气开采物理模拟试验方法的可靠性,能够为现场煤层气开采提供参考。 相似文献
11.
12.
基于古交区块煤田地质勘探资料以及煤层气井排采气体组分、甲烷碳氢同位素质谱等相关测试分析,查明了该区块煤层气地球化学特征、成因及其地质控制因素。结果显示:煤层气组分主要以甲烷为主,组分浓度介于85.36%~99.23%,其次为氮气,重烃含量最少,属于干气~特别干的气体。煤层气δ13C1介于-62.24‰~-40.70‰,δD介于-244.3‰~-229.3‰。以热成因气为主。煤层气δ13C1随着煤级增加呈变重趋势,随着埋深增加而变化的趋势不明显。古交区块矿化度整体从北向南逐渐增加,说明该地区水动力条件从北向南逐渐增强。南部刑家社矿区甲烷碳同位素较重,而北部镇城底矿区、西曲矿区以及马兰矿区的部分地区甲烷碳同位素较轻。研究区北部(MCQ9)煤层埋藏浅,露头发育,煤的Ro,max介于1.14%~2.18%,且水文地质条件适宜,形成了生物成因与热成因混合气体。 相似文献
13.
为了提高深部煤储层产气规律预测准确性、减小气井设计误差,分析了深部煤储层特征参数随埋深的变化规律,针对目前煤层气研究忽略了温度、地下水等因素问题,基于已建立的深部煤层气抽采流-固-热耦合模型,进行深部煤层气抽采数值模拟,分析不同地应力、初始渗透率、储层压力和温度等深部特征参数以及不同埋深条件下煤层气抽采的储层参数和产气演化规律。结果表明:渗透率变化为地应力增加、温度降低和煤层气解吸引起的煤基质收缩效应与储层压力降低引起的煤基质膨胀效应的综合竞争结果;随着煤层气和水被采出,储层温度降低和煤层气解吸占主导,储层渗透率升高;地应力对深部储层渗透率比例的变化起着主要作用,初始渗透率对产气速率起着控制作用;当煤层埋深小于临界埋深时,产气量随埋深逐渐增加,达到临界埋深后,产气量随埋深逐渐降低;低渗透率是制约埋深超千米的气井高产的关键。 相似文献