首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A laboratory-scale continuous reactor was constructed for production of specific structured triacylglycerols containing essential fatty acids and medium-chain fatty acids (MCFA) in the sn-2 and sn-1,3 positions, respectively. Different parameters in the lipase-catalyzed interesterification were elucidated. The reaction time was the most critical factor. Longer reaction time resulted in higher yield, but was accompanied by increased acyl migration. The concentration of the desired triacylglycerol (TAG) in the interesterification product increased significantly with reaction time, even though there was only a slight increase in the incorporation of MCFA. Increased reactor temperature and content of MCFA in the initial reaction substrate improved the incorporation of MCFA and the yield of the desired TAG in the products. Little increase of acyl migration was observed. Increasing the water content from 0.03 to 0.11% (w/w substrate) in the reaction substrate had almost no effect on either the incorporation or the migration of MCFA, or on the resulting composition of TAG products and their free fatty acid content. Therefore, we conclude that the water in the original reaction substrate is sufficient to maintain the enzyme activity in this continuous reactor. Since the substrates were contacted with a large amount of lipase, the reaction time was shorter compared with a batch reactor, resulting in reduced acyl migration. Consequently, the purity of the specific structured TAG produced was improved. Interesterification of various vegetable oils and caprylic acid also demonstrated that the incorporation was affected by the reaction media. Reaction conditions for lipase-catalyzed synthesis of specific structured TAG should be optimized according to the oil in use. Presented in part at Food Science Conference, Copenhagen, Denmark, January 30–31, 1997.  相似文献   

2.
A laboratory-scale continuous reactor was constructed for production of specific structured triacylglycerols containing essential fatty acids and medium-chain fatty acids (MCFA) in the sn-2 and sn-1,3 positions, respectively. Different parameters in the lipase-catalyzed interesterification were elucidated. The reaction time was the most critical factor. Longer reaction time resulted in higher yield, but was accompanied by increased acyl migration. The concentration of the desired triacylglycerol (TAG) in the interesterification product increased significantly with reaction time, even though there was only a slight increase in the incorporation of MCFA. Increased reactor temperature and content of MCFA in the initial reaction substrate improved the incorporation of MCFA and the yield of the desired TAG in the products. Little increase of acyl migration was observed. Increasing the water content from 0.03 to 0.11% (w/w substrate) in the reaction substrate had almost no effect on either the incorporation or the migration of MCFA, or on the resulting composition of TAG products and their free fatty acid content. Therefore, we conclude that the water in the original reaction substrate is sufficient to maintain the enzyme activity in this continuous reactor. Since the substrates were contacted with a large amount of lipase, the reaction time was shorter compared with a batch reactor, resulting in reduced acyl migration. Consequently, the purity of the specific structured TAG produced was improved. Interesterification of various vegetable oils and caprylic acid also demonstrated that the incorporation was affected by the reaction media. Reaction conditions for lipase-catalyzed synthesis of specific structured TAG should be optimized according to the oil in use. Presented in part at Food Science Conference, Copenhagen, Denmark, January 30–31, 1997.  相似文献   

3.
This work provides different strategies for the enzymatic modification of the fatty acid composition in soybean phosphatidylcholine (PC) and the subsequent purification. Enzymatic transesterification reactions with caprylic acid as acyl donor were carried out in continuous enzyme bed reactors with a commercial immobilized lipase (Lipozyme RM IM) as catalyst. Operative stability of the immobilized lipase was examined under solvent and solvent‐free conditions. The long reaction time required to have a high incorporation, combined with rapid deactivation of the enzyme, makes the solvent‐free transesterification reaction unfavorable. Performing the reaction in the presence of solvent (hexane) makes it possible to have high incorporation into PC and deactivation of the lipase is less pronounced as compared to solvent‐free operations. For solvent‐free operation, it is suggested to recycle the reaction mixture through the packed bed reactor, as this would increase incorporation of the desired fatty acids, due to increased contact time between substrate and enzyme in the column. Removal of free fatty acids from the reaction mixture can be done by ultrafiltration; however, parameters need to be selected with care in order to have a feasible process. No changes are observed in the phospholipid (PL) distribution during ultrafiltration, and other techniques as column chromatography may be required if high purity of individual PL species is desired. LC/MS analysis of transesterified PC revealed the presence of 8:0/8:0‐PC, showing that acyl migration takes place during the acidolysis reaction.  相似文献   

4.
A comparative study on lipase catalyzed production of middle chain diacylglycerol was conducted with esterification of glycerol and glycerolysis of triacylglycerol, respectively, in which high diacylglycerol yield and high acyl donor conversion are two desired goals. The esterification provided much higher acyl donor conversion than glycerolysis (with the conversion of 94.42% and 74.21%, respectively). The esterification in packed bed reactor produced more diacylglycerol than that in batch reactor (with relative content in the product of 77.26% and 45.45%, respectively). Mass transfer is one of the limitations during the procedure. Microwave irradiation provides higher reaction rate and selectivity in glycerolysis.  相似文献   

5.
Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium-chain triacylglycerols and oleic acid were used as model substrates. Response-surface methodology was applied to optimize the reaction system with four process para-meters, these being volume flow rate, water content in the substrates, reaction temperature, and substrate ratio. The incorporation of acyl donors, product yields, and the content of diacylglycerols were measured as model responses. Enzyme activity was not identical for the sequential experiments in the same enzyme bed due to the deactivation of the Lipozyme IM. Therefore, the results were normalized based on enzyme deactivation models. Well-fitting quadratic models were obtained after normalizing the data for the incorporation of oleic acid and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93 and that for the diincorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65 °C; substrate ratio, 5.5; and water content, 0.1%. The production of diacylglycerols was not well correlated with any of the parameters, and the yield generally decreased with the experimental sequence. This was due to the stoichiometric water in the substrate mixture in the packed enzyme bed being complicated by the water binding and absorption of the immobilized lipase. The main effects of parameters were also examined, and conclusions in agreement with our previous results were made.  相似文献   

6.
A comparative study was done on the production of different sterol esters using a stirred tank batch reactor (STBR) and packed bed reactor (PBR) using Thermomyces lanuginosus (Lipozyme TLIM) enzyme, a commercially immobilized lipase. Different oils were used as the sources of particular fatty acids, e.g., fish oil for n-3 polyunsaturated fatty acids (n-3 PUFA), linseed oil for alpha linolenic acid (ALnA) and mustard oil for erucic acid. Reaction parameters, such as substrate molar ratio, reaction temperature and enzyme concentration, were standardized in the STBR and maintained in the PBR. To provide equal time of residence between the substrate and enzyme in both the reactors for the same amount of substrates, the substrate flow rate in the PBR was maintained at 0.27 ml/min. Thin layer chromatography was used to monitor the reaction, and column chromatography was used to determine the product yields. Fatty acid compositions of the esters were determined by gas chromatography. The study showed that the packed bed bioreactor was more efficient than the batch reactor in sterol-ester synthesis with less migration of acyl groups.  相似文献   

7.
The possibilities of producing structured phospholipids between soybean phospholipids and caprylic acid by lipase-catalyzed acidolysis were examined in continuous packedbed enzyme reactors. Acidolysis reactions were performed in both a solvent system and a solvent-free system with the commercially immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) as catalyst. In the packed bed reactors, different parameters for the lipase-catalyzed acidolysis were elucidated, such as solvent ratio (solvent system), temperature, substrate ratio, residence time, water content, and operation stability. The water content was observed to be very crucial for the acidolysis reaction in packed bed reactors. If no water was added to the substrate during reactions under the solvent-free system, very low incorporation corporation of caprylic acid was observed. In both solvent and solvent-free systems, acyl incorporation was favored by a high substrate ratio between acyl donor and phospholipids, a longer residence time, and a higher reaction temperature. Under certain conditions, the incorporation of around 30% caprylic acid can be obtained in continuous operation with hexane as the solvent. Presented at the 95th American Oil Chemists' Society Annual Meeting and Expo in Cincinnati, Ohio, May 10, 2004.  相似文献   

8.
描述了在批式反应器和连续流搅拌反应器(CSTR)中酶动力学拆分对映异构体的不同之处,从宏观反应器平衡角度,推导出了在CSTR反应器中不同于在批式反应器中的一定酶立体选择性(E)下,底物或产物的对映体过量值与反应的转化率之间关系的定量关系式。并通过商品脂肪酶及芽胞杆菌E-53脂肪酶催化的萘普生甲酯的不对称水解反应得到了证实。分别在批式反应器和CSTR反应器中进行萘普生的酶法拆分,在一定转化率下,批式  相似文献   

9.
Structured lipids from menhaden oil were produced by enzymatic acidolysis in a packed bed reactor. Response surface methodology was applied to optimize the reaction. Lipozyme IM from Rhizomucor miehei lipase was the biocatalyst, and caprylic acid was the acyl donor. Parameters such as residence time, substrate molar ratio, and reaction temperature were included for the optimization. High incorporation of acyl donor and retention of high levels of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in the original menhaden oil were obtained. Good quadratic models were obtained for the incorporation of caprylic acid and for the content of EPA plus DHA retained, by multiple regression with backward elimination. The coefficients of determination (R 2) for the two models were 0.91 and 0.87, respectively. The regression probabilities (P) were below 0.003 for both models. Also, the predicted values from the two models had linear relationships with the observed responses. All parameters studied had positive effects on the incorporation of caprylic acid, but only residence time and substrate molar ratio had negative effects on the content of EPA plus DHA retained. The optimal conditions generated from models were temperature =65°C, substrate molar ratio=4–5, and residence time=180–220 min. Incorporated caprylic acid did not replace DHA, but the content of EPA decreased somewhat with an increase in caprylic acid incorporation.  相似文献   

10.
Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of by-products. In this paper, the elucidation of acyl migration by response surface design was carried out in the Lipozyme IM (Rhizomucor miehei)-catalyzed interesterification between rapeseed oil and capric acid in solvent-free media. A five-factor response surface design was used to evaluate the influence of five major factors and their relationships. The five factors, water content, reaction temperature, enzyme load, reaction time and substrate ratio, were varied at three levels together with two star points. All parameters besides substrate ratio had strong positive influences on acyl migration, and reaction temperature was most significant. The contour plots clearly show the interactions between the parameters. The migration rates of different fatty acids were also compared from three different sets of experiments during the lipase-catalyzed reaction. The best-fitting quadratic response surface model was determined by regression and backward elimination. The coefficients of determination (R 2) of the model were 0.996 and 0.981 for Q 2 value. The results show that the fitted quadratic model satisfactorily expresses acyl migration for the enzymatic interesterification in the batch reactor used.  相似文献   

11.
Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of byproducts. In this paper, the elucidation of acyl migration by response surface design was carried out in the Lipozyme IM (Rhizomucor miehei)-catalyzed interesterification between rapeseed oil and capric acid in solvent-free media. A five-factor response surface design was used to evaluate the influence of five major factors and their relationships. The five factors, water content, reaction temperature, enzyme load, reaction time and substrate ratio, were varied at three levels together with two star points. All parameters besides substrate ratio had strong positive influences on acyl migration, and reaction temperature was most significant. The contour plots clearly show the interactions between the parameters. The migration rates of different fatty acids were also compared from three different sets of experiments during the lipase-catalyzed reaction. The best-fitting quadratic response surface model was determined by regression and backward elimination. The coefficients of determination (R 2) of the model were 0.996 and 0.981 for Q 2 value. The results show that the fitted quadratic model satisfactorily expresses acyl migration for the enzymatic interesterification in the batch reactor used.  相似文献   

12.
Chemical transesterification is of major importance to the edible oil industry. While alkali catalysts randomize all the fatty acids in a triglyceride mixture, the use of a 1,3 specific lipase causes a more selective exchange of fatty acid residues. Basic process parameters for the development of a continuous solvent-free process in a fixed bed reactor have been determined. The kinetics of the transesterfication reaction and the influence of particle diameter, substrate and water concentration on the effective reaction rate were examined in batchwise experiments. Residence time distribution and parameters of inter- and intraparticle mass transfer were determined by modelling of experiments carried out in a fixed bed reactor under transient conditions. Fixed bed reactors with side stream analysis were used for continuous transesterification. A kinetic model was developed for the enzyme catalyzed reaction, thereby showing the analogy between heterogeneous catalytic and enzyme catalyzed reactions. A one-dimensional heterogeneous reactor model was formulated on the basis of the kinetic equation and different process parameters. For numerical calculations, an exponential enzyme distribution inside the carrier was assumed. The simulation of experimental results indicates that they are well described by the developed model. Water concentration and presence of other substances strongly influence the stability of the immobilized enzyme.  相似文献   

13.
Esterification between oleic acid and oleyl alcohol, catalyzed by theMucor miehei immobilized lipase in a batch-stirred tank reactor with supercritical carbon dioxide as solvent produced higher reaction rates at supercritical conditions than in the solvent-free system. A continuous fixed-bed reactor was designed based on the results obtained from batch experiments. At 150 bar, 40°C, and with water activity 0.46% w/w, the activity of the enzyme preparation is practically unchanged when CO2 was used as solvent. The addition of small amounts of water increases the conversion rate. The higher conversion also was observed at longer residence time. Whenn-butane was used as reaction medium, a decrease in conversion was observed.  相似文献   

14.
Gas and liquid velocities in laboratory scale trickle bed reactors are one or two orders of magnitude lower than those in commercial reactors. Then, the kinetic data may include the external effects. This shortcoming of laboratory scale trickle bed reactor can be resolved by diluting the catalyst bed with fine inert particles. The catalyst bed dilution increases dynamic liquid holdup, pressure drop, gas–liquid mass transfer coefficient. Hydrogenation of 2-phenylpropene on Pd/Al2O3 was performed with the trickle bed reactor diluted with fine inert particles and the coiled tubular flow-type reactor to compare the kinetics with that of the basket type batch reactor. The trickle bed reactor diluted with fine inert particles is suitable to obtain the reaction rate without external effects even if the liquid velocity is low. The coiled tubular flow-type reactor should be used at high gas velocities.  相似文献   

15.
Diacylglycerols (DAG) are important intermediates in lipase-catalyzed interesterification, but a high DAG concentration in the reaction mixture results in a high DAG content in the final product. We have previously shown that a high DAG concentration in the reaction mixture increases the degree of acyl migration, thus adding to the formation of by-products. In the present study we examined the influence of water content, reaction temperature, enzyme load, substrate molar ratio (oil/capric acid), and reaction time on the formation of DAG in batch reactors. We used response surface methodology (RSM) to minimize the numbers of experiments. The DAG content of the product was dependent on all parameters examined except reaction time. DAG formation increased with increasing water content, enzyme load, reaction temperature, and substrate ratio. The content of sn-1,3-DAG was higher than that of sn-1,2-DAG under all conditions tested, and the ratio between the contents of the former compounds and the latter increased with increasing temperature and reaction time. The water content, enzyme load, and substrate ratio had no significant effect on this ratio. The DAG content was positively correlated with both the incorporation of acyl donors and the degree of acyl migration.  相似文献   

16.
Lipase-catalyzed synthesis of structured low-calorie triacylglycerols   总被引:4,自引:0,他引:4  
Because of their unique fatty acid specificities and regioselectivities, lipases have been found to be effective catalysts for the synthesis of structured lipids that have a predetermined composition and distribution of fatty acyl groups on the glycerol backbone. The prospective plant-derived lipase found in the exudate of Carica papaya is known for its shortchain acyl group specificity, 1,3-glycerol regioselectivity, and sn-3 stereoselectivity. Carica papaya latex (CPL) was therefore examined for its potential ability to synthesize structured lowcalorie short- and long-chain triacylglycerols (SLCT). In this paper, we describe the utility of CPL in the lipase-catalyzed interesterification reaction of triacetin and hydrogenated soybean oil. Normal-phase high-performance liquid chromatography, combined with mass spectrometry, was used to distinguish the structured SLCT synthesized using the lipase from the corresponding SLCT produced by chemical synthesis.  相似文献   

17.
Candida rugosa lipase and Ryzopus oryzae lipase were simultaneously immobilized on silica gel following enzyme pretreatment. The factors affecting the co-immobilization process, such as reaction time and enzyme ratio, were investigated. Biodiesel was then produced by using the co-immobilized enzyme matrix. A batch system was employed with stepwise methanol feeding, and the continuous process involved a packed-bed reactor. Under optimal immobilization conditions, the activity was approximately 16,000 U/g·matrix. When co-immobilized enzyme was used with optimized stepwise methanol feeding, conversion of biodiesel reached about 99% at 3 h and was maintained at a level of over 90% for about 30 reuses.  相似文献   

18.
Effects of water content, reaction time, and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied. The biocatalyst used was Lipozyme IM (commercial immobilized lipase). The substrates used for sn-MLM-type were fish oil and capric acid, and medium chain triacylglycerols and sunflower free fatty acids for sn-LML-type. The observed incorporation with the time course agrees well with the Michaelis-Menten equation, while the acyl migration is proportional to time within the range of 20 mol% acyl migration (MLM-type: M f =0.2225 T, R2=0.98; LML-type: M f =0.5618 T, R2=0.99). As water content (wt%, on the enzyme basis) increased from 3.0 to 11.6% for MLM-type and from 3.0 to 7.2% for LML-type in the solvent-free systems, the incorporation rates in the first 5 h increased from 3.34 to 10.30%/h, and from 7.29 to 11.12%/h, respectively. However, the acyl migration rates also increased from 0.22 to 1.12%/h and from 0.56 to 1.37%/h, respectively. Different effects in the production of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction conditions and vice versa. The acyl migration can not be totally avoided in present systems, but can be reduced to a relatively low level. Acyl migration during the downstream processing has also been observed and other factors influencing the acyl migration are briefly discussed.  相似文献   

19.
Lipase-Catalyzed Interesterification of Triglycerides in a Solvent-Free Process II: Engineering Parameters for the Application of a Continuous Process Fixed bed reactors are promising reactor systems for the continuous interesterification of fats and oils with immobilized lipases in a solvent-free process. Engineering parameters which are necessary for the design of the bioreactor were studied. The kinetics of the interesterification in the continuous process are influenced by the washing out of water from the biocatalyst by the substrate. External mass transfer effects can be neglected, internal mass transfer reduces the reaction rate. The pressure drop across the catalyst bed is acceptable at temperatures higher than 60°C. The results show that the continuous interesterification in a solvent-free process can be performed.  相似文献   

20.
The cause and effects of acyl migration during the purification of specific structured lipids by distillation were studied in a conventional batch deodorizer with stripping steam. The mixture of specific structured lipids produced by lipase-catalyzed acidolysis between rapeseed oil and capric acid contained a large amount of free fatty acids and a small amount of partial acylglycerols besides triacylglycerols. Therefore, the effect of steam, free fatty acids, diacylglycerols, and monoacyl-glycerols on acyl migration was studied in a palm oil midfraction model. The results showed that all these factors influenced the rate of acyl migration, and their combinations made the effect more severe. However, diacylglycerols were found to be the main reason for acyl migration. In the distillation of the specific structured lipid product mixture, distillation temperature and time were the main factors to determine the degree of acyl migration and the extent of separation of free fatty acids. The results indicate that more efficient separation technology should be used to improve the quality of the purified structured lipids. In order to reduce the distillation temperature, vacuum should be made as low as possible with more effective pumps. To reduce the distillation time, thin-film principle in a packed column should be used, or other more efficient distillation techniques such as molecular distillation or short-path distillation should be exploited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号