首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The removal of copper ions from wastewater by ion exchange has been studied using an iminodiacetate resin.The capacity of the resin for the copper ions has been determined to be 2.30 mmol·g~(-1) by measuring the equilibrium isotherm at 25 °C and initial pH value of 3.5 where the final equilibrium p H value is 5. An analysis of equilibrium isotherm models showed that the best fit model was the Langmuir–Freundlich. The kinetics of the ion exchange process have been investigated and four kinetic models have been tested namely: Ritchie model, pseudo-second order model, pseudo-first order model and the Elovich model. The pseudo-second order model provides the best fit to the kinetic data.  相似文献   

2.
Zinc oxide nanoparticles(ZnOnp) are molecular nanoparticles synthesized by a chemical precipitation method from zinc nitrate tetrahydrate and sodium hydroxide.Carbonized sawdust(CSD) was prepared from sawdust obtained from a local wood mill.The matrix of both provides a better material as an adsorbent.The present study applied the functionality of ZnOnp,CSD,and ZnOnp-CSD matrix as adsorbent materials for the removal of Pb(Ⅱ) ions from aqueous solution.The method of batch process was employed to investigate the potential of the adsorbents.The influence of pH,contact time,initial concentration of adsorbate,the dosage of adsorbents,and the temperature of adsorbate-adsorbent mixture on the adsorption capacity were revealed.The adsorption isotherm studies indicate that both Freundlich and Langmuir isotherms were suitable to express the experimental data obtained with theoretical maximum adsorption capacities(q_m) of 70.42,87.72,and 92.59 mg·g~(-1) for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix,respectively.The separation factors(R_L) calculated showed that the use of the adsorbents for the removal of Pb(Ⅱ) ions is a feasible process with R_L 1.The thermodynamic parameters obtained revealed that the processes are endothermic,feasible,and spontaneous in nature at 25-50℃.Evaluation of the kinetic model elected that the processes agreed better with pseudo-second order where the values of rate constant(k_2) obtained for the adsorption of Pb(Ⅱ) ions onto ZnOnp,CSD,and ZnOnp-CSD matrix are 0.00149,0.00188,and 0.00315 g·mg~(-1)·min~(-1),respectively.The reusability potential examined for four cycles indicated that the adsorbents have better potential and economic value of reuse and the ZnOnp-CSD matrix indicates improved adsorbent material to remove Pb(Ⅱ) ions from aqueous solution.  相似文献   

3.
The adsorption and mechanism of Re(Ⅶ)on resin D318 were studied using chemical methods and IR spectrometry.At pH 5.2,the static and dynamic saturation adsorption capacities were 351.4 and 366.5 mg·g-1,respectively.The adsorption behavior obeyed the Freundlich empirical equation and the adsorption rate constant k298 was 6.37×10-4s-1.The desorption percentage was up to 99.7%when 2.0 mol·L-1KSCN was used for dynamic desorption.  相似文献   

4.
Adsorption capacity of activated carbon prepared from spent tea leaves(STL-AC) for the removal of aspirin from aqueous solution was investigated in this study. Preliminary studies have shown that treatment with phosphoric acid(H_3PO_4) increased removal efficiency of STL-AC. Characterizations on STL-AC revealed excellent textural properties(1200 m~2·g~(-1), 51% mesoporosity), as well as distinctive surface chemistry(1.08 mmol·g~(-1) and 0.54 mmol·g~(-1) for acidic and basic oxygenated groups, pH_(pzc)= 2.02). Maximum removal efficiency of aspirin observed was 94.28% after 60 min when the initial concentration was 100 mg·L~(-1), 0.5 g of adsorbent used,pH 3 and at a temperature of 30 ℃. The adsorption data were well fitted to the Freundlich isotherm model and obeyed the pseudo-second order kinetics model. The adsorption of aspirin onto STL-AC was exothermic in nature(ΔH~Θ=~(-1)3.808 k J·mol~(-1)) and had a negative entropy change, ΔS~Θ(-41.444 J·mol~(-1)). A negative Gibbs free energy, ΔG~Θ was obtained indicating feasibility and spontaneity of the adsorption process. The adsorption capacity of AC-STL(178.57 mg·g~(-1)) is considerably high compared to most adsorbents synthesized from various sources, due to the well-defined textural properties coupled with surface chemistry of STL-AC which favors aspirin adsorption. The results demonstrate the potential of STL-AC as aspirin adsorbent.  相似文献   

5.
AB-8 resin was used as an adsorbent for the removal of trans-1,2-cyclohexandiol(CHD) from aqueous solutions.Batch experiments were carried out to investigate the effect of contact time and temperature on sorption efficiency.The adsorptive thermodynamic properties and kinetics of CHD from water onto AB-8 resin were studied.The Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior.Thermodynamic parameters such as G,H and S were calculated.The results indicate that the equilibrium data are perfectly represented by Langmuir isotherm model.Thermodynamic study reveals that it is an exothermic process in nature and mainly physical adsorption enhanced by chemisorption with a decrease of entropy process.The kinetics of CHD adsorption is well described by the pseudo second-order model.The adsorbed CHD can be eluted from AB-8 resin by 5% ethanol aqueous solution with 100% elution percentage.  相似文献   

6.
Inverse emulsion polymerization was employed to synthesize inverse emulsion Cd(II) imprinted polymers(IEII P). The morphology and functional groups of IEIIP were characterized by SEM,FTIR and TG. Static adsorption experiments and competitive adsorption test were used to evaluate the adsorption ability of IEIIP. The adsorption capacity of polymers could reach 86.7 mg·g~(-1) under the optimal adsorption conditions. The pseudo second order kinetic model and Langmuir isotherm model could be used to analyze the experimental data well. The adsorption process of IEIIP was chemical adsorption process and monomolecular type. Thermodynamic parameters showed that the adsorption process was endothermic and could occur spontaneously. The selectivity coefficients k of Cd~(2+)/Pb~(2+), Cd~(2+)/Zn~(2+) and Cd~(2+)/Cu~(2+) were 2.4998, 1.2437 and 4.6882, respectively. The proposed method provides a new thought for removing Cd(II) in water samples.  相似文献   

7.
2-萘磺酸/硫酸在弱碱性树脂上的吸附平衡研究   总被引:1,自引:0,他引:1  
Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorption behavior of β-naphthalenesulfonic acid(NSA and sulfuric acid from their solution at 25℃ onto weakly basic resin D301R,Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA.The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model.The ideal adsorbed solution theory(IAST) coupled with the single-solute adsorption models were used to predict the bisolute competitive adsorption equilibria.The IAST coupled with the Langmuir and the Freundlich model for sulfuric acid and NSA.Respectively,yields the favorable representation of the bisolute competitive adsorption behavior.  相似文献   

8.
In this study, quaternized chitosan microspheres(QCMS) were prepared and its Cr(VI) removal potential was investigated. Batch experiments were conducted to examine kinetics, adsorption isotherm, p H effect,and thermodynamic parameters. Equilibrium was attained within 50 min and maximum removal of 97.34%was achieved under the optimum conditions at p H 5. Adsorption data for Cr(VI) uptake by the QCMS were analyzed according to Langmuir, Freundlich, and Temkin adsorption models. The maximum uptake of Cr(VI)was 39.1 mg·g~(-1). Thermodynamic parameters for the adsorption system were determinated at 293 K, 303 K,313 K and 323 K.(ΔH° = 16.08 k J·mol~(-1);ΔG° =- 5.84 to- 8.08 k J·mol~(-1)and ΔS° = 74.81 J·K~(-1)·mol~(-1)).So the positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid–liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. The kinetic process was described by a pseudo-second-order rate equation very well. The results of the present study indicated that the QCMS could be considered as a potential adsorbent for Cr(VI) in aqueous solutions.  相似文献   

9.
The potentials of silty clay(SC), acquired from Chaman, Balochistan, were investigated as adsorbent for Ni(Ⅱ)and Cd(Ⅱ) removal from contaminated media. The influence of different operating factors like dose, pH, temperature, and time of contact was explored, and optimum values were noted under batch adsorption method. Isothermal study was conducted with varying concentrations of solutions on optimized conditions and different adsorption models i.e., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich(D–R) isotherm, which were employed to interpret the process. The isothermal data of both Ni(Ⅱ) and Cd(Ⅱ) were well fitted to Langmuir isotherm suggesting the formation of monolayer of metal ions on silty clay. The values of adsorption capacity noted for Ni(Ⅱ) and Cd(Ⅱ) were 3.603 mg·g~(-1) and 5.480 mg·g~(-)1, respectively. Kinetic studies affirmed that pseudo second order(PSO) kinetics was being obeyed by the removal of Ni(Ⅱ) and Cd(Ⅱ). Thermodynamic variables like free energy change(ΔG°), enthalpy change(ΔH°) and entropy change(ΔS°) were calculated. The negative value of ΔG° and the positive values of ΔH° and ΔS° unfolded that the removal process of both metal ions of by SC was spontaneous, endothermic and feasible.  相似文献   

10.
A new nanometer material, nanometer AlO(OH) loaded on the fiberglass with activated carbon fibers felt(ACF) as the carrier, was prepared by hydrolytic reaction for the removal of Cd(II) from aqueous solution using column adsorption experiment. As was confirmed by XRD determination, the hydrolysis production loaded on fiberglass was similar to the orthorhombic phase AlO(OH). SEM images showed that AlO(OH) particles were in the form of small aggregated clusters. The Thomas model was applied for estimating the kinetic parameters and the saturated adsorption ability of Cd(II) adsorption on the new adsorbent. The results showed that the maximum adsorption capacity of Cd(II) was 128.50 mg·g^-1 and 117.86 mg·g^-1 for the adsorbent mass of 0.3289 g and the adsorbent mass of 0.2867 g, respectively. The elution experiment result indicated that the adsorbed Cd ions was easily desorbed from the material with 0.1 mol·L^-1 HCl solution. Adsorption-desorption cycles showed the feasibility of repealed uses of the composited material. The adsorption capacities were influenced by pH and the initial Cd(II) concentration. The amount adsorbed was greatest at pH 6.5 and the initial Cd(II) concentration of 0.07 mg·L^-1, respectively. Nanometer AlO(OH) played a major role in the adsorption process, whereas the fiberglass and ACF were assistants in the process of removing Cd(II). In addition, the adsorption capacities for Cd(II) were obviously reduced from 128.50 mg·L^-1 to 64.28 mg·L^-1 when Pb ions were present because Pb ions took up more adsorption sites.  相似文献   

11.
The objective of this research was to enhance adsorption capacity of Acacia nilotica(keekar) sawdust for the abatement of chromium bearing wastewater and to investigate the effect of process parameters on adsorption capacity. The sawdust was activated by acid wash and functionalized subsequently with formaldehyde.Functionalization of activated sawdust raised its chromium removal efficiency of almost 10% as compared to its adsorption removal efficiency of HCl treated sawdust in a batch adsorption study. Adsorption kinetic data provided better fitting with pseudo second order model. Maximum adsorption capacity calculated through the best fitting Langmuir model was 6.34 mg·g~(-1) and 8.2 mg·g~(-1) for HCl treated and formaldehyde functionalized sawdust adsorbents, respectively. The adsorption of Cr(Ⅵ) was endothermic when studied by varying temperature from 20 °C to 50 °C for both activated and functionalized adsorbents.  相似文献   

12.
A fast and selective adsorbent for Hg(II) from aqueous solutions using thiourea(TU) functionalized polypropylene fiber grafted acrylic acid(PP-g-AA),PP-g-AA-TU fibers,was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.The adsorption behavior of the functionalized chelating fibers for Hg(II) was investigated by static adsorption experiments,and the effects of some essential factors on adsorption of Hg(II) were examined,such as pH,initial concentration,adsorption time,coexisting cations,and temperature.The results showed that the adsorptive equilibrium could be achieved in 10 min,and the equilibrium adsorption quantity of PP-g-AA-TU fibers was 20 times that of PP-g-AA fibers.The PP-g-AA-TU fibers showed a very high adsorption rate and a good selectivity for Hg(II) over a wide range of p H.The adsorption isotherm can be well described with Langmuir model,with the maximum adsorption capacity for Hg(II) up to52.04 mg·g~(-1)and the removal of Hg(II) more than 97%.The kinetic data indicate that the adsorption process is best-fitted into the pseudo-second-order model.  相似文献   

13.
Magnetic starch microspheres(AAM-MSM) were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS) as a crude material, acrylic acid(AA) and acrylamide(AM) as graft copolymer monomers, and methyl methacrylate(MMA) as the dispersing agent and used as an adsorbent for the removal of Cd(II) ions from aqueous solution. Fourier-transform infrared spectroscopy(FT-IR), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), and vibrating sample magnetometry(VSM) were used to characterize the AAM-MSM adsorbent. The results indicated that AA, AM, and MMA were grafted to the MS, and the Fe_3 O_4 nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface, uniform size, and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(II) ions. The maximum adsorption capacity of Cd(II) on the AAM-MSM was 39.98 mg·g~(-1). The adsorbents were superparamagnetic, and the saturation magnetization was 16.7 A·m~2·kg~(-1). Additionally, the adsorption isotherms and kinetics of the adsorption process were further investigated. The process of Cd(II) ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models, which suggested that the chemical reaction process dominated the adsorption process for the Cd(II) and chemisorption was the rate-controlling step during the Cd(II) removal process.  相似文献   

14.
Commercial grade weakly basic resin D301 was impregnated with iron through a simple method using ferric chloride. Experiments for single, bisolute and trinary competitive adsorption were carried out to investigate the adsorption behavior of 2-naphthalenesulfonic acid (NSA), sulfuric acid and sulfurous acid from their solution at 298K onto the novel hybrid iron impregnated D301(Fe-D301). Adsorption affinity of NSA on Fe-D301 was found to be much higher than that of sulfuric acid, while adsorption affinity of sulfuric acid was slightly higher than that of sulfurous acid. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The non-ideal competitive adsorbed model coupled with the single-solute adsorp-tion models were used to predict the bisolute and trinary-solute competitive adsorption equilibria. The NICM coupled with the Langmuir model yields the favorable representation of the bisolute and trinary-solute compet-itive adsorption behavior.  相似文献   

15.
Chromium is a common harmful pollutant with high toxicity and low bearing capacity of soil and water. Excellent salinity resistance, a wide p H range, and high regeneration capacity were essential for qualified adsorbents used in removing hexavalent chromium(Cr(VI)) from polluted water. Herein, iron oxalate modified weak basic resin(IO@D301) for the removal of Cr(VI) was prepared by the impregnation method. The IO@D301 was characterized by scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FTIR), X-Ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS). Owing to abundant amine, carboxyl groups and iron ions existing on the surface, IO@D301 possesses high adsorption and salinity resistance capacity for Cr(VI). The maximum adsorption capacity of IO301 towards Cr(VI) reached 201.30 mg·g~(-1) at 293 K and a p H of 5. The adsorption equilibrium was well fitted by the Freundlich model, and the adsorption process was described by the pseudofirst-order kinetics model as spontaneous and exothermic. The mechanism may be identified as electrostatic attraction, coordination, and reduction, which was confirmed by FT-IR and X-ray photoelectron spectroscopy.  相似文献   

16.
锰氧化物负载沸石固定床离子交换柱去除铀(VI)的研究   总被引:2,自引:0,他引:2  
The adsorption of uranium (VI) on the manganese oxide coated zeolite (MOCZ) from aqueous solution was investigated in a fixed-bed column. The experiments were conducted to investigate the effects of bed height, flow rate, particle size, initial concentration of uranium (VI), initial pH, presence of salt and competitive ions. The U-uptake by MOCZ increased with initial uranium (VI) concentration and bed height, but decreased as the flow rate and particle size increased. In the presence of salt and competitive ions, the breakthrough time was shorter. The ad-sorption capacity reached a maximum at pH of 6.3. The Thomas model was applied to the experimental data to de-termine the characteristic parameters of the column for process design using linear regression. The breakthrough curves calculated from the model were in good agreement with the experimental data. The BDST model was used to study the influence of bed height on the adsorption of uranium (VI). Desorption of uranium (VI) in the MOCZ column was investigated. The column could be used for at least four adsorption-desorption cycles using 0.1 mol•L-1 NaHCO3 solution as the elution. After desorption and regeneration with deionized water, MOCZ could be reused to adsorb uranium (VI) at a comparable capacity. Compared to raw zeolite, MOCZ showed better capacity for uranium (VI) removal.  相似文献   

17.
The advantage of using an available and abundant residual biomass,such as lignin,as a raw material for activated carbons is that it provides additional economical interest to the technical studies.In the current investigation,a more complete understanding of adsorption of Cr(VI) from aqueous systems onto H3PO4-acid activated lignin has been achieved via microcolumns,which were operated under various process conditions.The practice of using microcolumn is appropriate for defining the adsorption parameters and for screening a large number of potential adsorbents.The effects of solution pH(2-8),initial metal ion concentration(0.483-1.981 mmol·L-1),flow rate(1.0-3.1 cm3·min-1),ionic strength(0.01-0.30 mmol·L-1) and adsorbent mass(0.11-0.465 g) on Cr(VI) adsorption were studied by assessing the microcolumn breakthrough curve.The microcolumn data were fitted by the Thomas model,the modified Dose model and the BDST model.As expected,the adsorption capacity increased with initial Cr(VI) concentration.High linear flow rates,pH values and ionic strength led to early breakthrough of Cr(VI).The model constants obtained in this study can be used for the design of pilot scale adsorption process.  相似文献   

18.
A new surfactant of Gemini-type,N,N'-((phthylbis(oxy))bis(ethane-2,1-diyl))bis(N,N-dimethyldodecan-1-aminium bromide) is prepped confirmed.The dissolution suppression impact of the new compound on steel is performed in 1 mol·L~(-1) HCl environment by means of chemical and electrochemical methods.The prepared surfactant is an agreeable dissolution inhibitor for steel.The mitigation efficacy rises with the quantity of the compound.The surfactant belongs to inhibitors of mixed-type.The adsorption of the synthesized compound followed the Langmuir's model.The negative magnitudes of both ΔG_(ads)~θ and ΔH~(adsθ)indicate that the adsorption process proceeds from its own accord and exothermic.The mechanism of adsorption is elucidated by scanning microscopy.It is established that the transfer resistance(R_(ct)) value rose,where the value of the phase element(CPE) reduced with the amount of synthesized inhibitor.According to the experimental data arrived by surface tension measurements,the prepared compound is a powerful active agent at the air/water boundary.  相似文献   

19.
累托石吸附分离水中金霉素(英文)   总被引:1,自引:0,他引:1  
The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.  相似文献   

20.
In tnis study,an alternative precursor for production of activated carbon was introduced using dragon fruit(Hylocereus costaricensis) peel(DFP).Moreover,KOH was used as a chemical activator in the thermal carbonization process to convert DFP into activated carbon(DFPAC).In order to accomplish this research,several approaches were employed to examine the elemental composition,surface properties,amorphous and crystalline nature,essential active group,and surface morphology of the DFPAC.The Brunauer-Emmett-Teller test demonstrated a mesoporous structure of the DFPAC has a high surface area of 756.3 m~2·g~(-1).The cationic dye Methylene Blue(MB) was used as a probe to assess the efficiency of DFPAC towards the removal of MB dye from aqueous solution.The effects of adsorption input factors(e.g.DFPAC dose(A:0.04-0.12 g·L~(-1)), pH(B:3-10),and temperature(C:30-50℃)) were investigated and optimized using statistical analysis(i.e.Box-Behnken design(BBD)).The adsorption kinetic model can be best categorized as the pseudo-first order(PFO).Whereas,the adsorption isotherm model can be best described by Langmuir model,with maximum adsorption capacity of DFPAC for MB dye was 195.2 mg·g~(-1) at 50℃.The adsorption mechanism of MB by DFPAC surface was attributed to the electrostatic interaction,π-π interaction,and H-bonding.Finally,the results support the ability of DFP to be a promising precursor for production of highly porous activated carbon suitable for removal of cationic dyes(e.g.MB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号