首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以电熔白刚玉(3~1、≤1、≤0.044 mm)、Al2O3-SiC复相粉(d50≤5μm)、α-Al2O3微粉(d50=1.2μm)、SiC粉(≤0.044 mm)、鳞片石墨(≤0.088 mm)、Si粉(d50=42.8μm)和B4C(d50≤10μm)为主要原料,热固酚醛树脂为结合剂,研究了分别用4%、8%、12%、16%质量分数的Al2O3-SiC复相粉等比例取代α-Al2O3微粉和SiC细粉对Al2O3-SiC-C试样在180℃固化后和1 000、1 500℃埋焦炭热处理后的显气孔率、体积密度、常温抗折强度、常温耐压强度、高温抗折强度(1 400℃)、抗热震性(1 100℃,水冷)以及抗氧化性(1 000、1 500℃)的影响。结果表明:随Al2O3-SiC复相粉加入量的增加,试样经180℃固化后常温性能下降,1 000℃热处理后常温性能变化不大,1 500℃热处理后除耐压强度显著提高外,其余各项常温性能变化不大;而高温抗折强度下降,抗热震性明显提高,试样经1 500℃氧化后的抗氧化性以加入4%质量分数复相粉的最佳。其原因可能是由于该复相粉的粒度更细,反应活性更高,其氧化层中更易生成莫来石,形成表面致密层从而有效地阻碍氧气向材料内部扩散。  相似文献   

2.
为了获得更加环保的Al2O3-Si C-C铁沟浇注料,在w(电熔棕刚玉颗粒)为60%、w(Si C颗粒和细粉)为21%、w(硅灰)为3%、w(α-Al2O3微粉)为3%、w(白刚玉微粉)为10.5%、w(Si粉)为2.5%的基础配方中,分别以质量分数为0、1%、2%、3%和4%的环保型含碳材料Carbores P等量替代白刚玉微粉,外加质量分数为7%的硅溶胶为结合剂,制成Al2O3-Si C-C浇注料,研究了Carbores P加入量对110℃干燥后及1 100和1 500℃烧后试样显气孔率、体积密度、烧后线变化率、常温耐压强度、常温抗折强度和高温抗折强度的影响。结果表明:随着Carbores P加入量的增加,干燥及烧后试样的显气孔率逐渐增大,干燥后试样的体积密度逐渐减小,1 100℃烧后试样的线膨胀率逐渐增大,干燥后试样的常温抗折强度和常温耐压强度以及1 100和1 500℃烧后试样的常温抗折强度变化均不大;1 100和1 500℃烧后试样的体积密度、1 500℃烧后试样的线膨胀率、1 100和1 500℃烧后试样的常温耐压强度、干燥后试样的高温抗折强度等均呈先增大后减小的变化趋势,均在Carbores P加入量为2%(w)时达到了最大。  相似文献   

3.
以电熔镁砂颗粒(5~3 min、3~1 mm、≤1 mm)、电熔镁砂细粉(≤0.088 mm)、鳞片石墨(≤0.15 mm)、矾土基β-SiAlON细粉(≤0.088 mm,气孔率28%,Z=2)为主要原料,配制成ω(鳞片石墨) ω(矾土基β-SiAlON细粉)分别为12% 0、4% 6%、4% 9%和4% 12%的4组配料,采用酚醛树脂作结合剂,以180 MPa压力成型.经185℃10 h固化后,按相关标准检测了试样的体积密度、显气孔率、常温耐压强度、常温抗折强度、高温抗折强度、抗热震性、抗氧化性和抗渣性.结果表明:随着试样中ω(鳞片石墨) ω(矾土基β-SiAlON细粉)按12% 0、4% 6%、4% 9%、4% 12%的顺序变化,试样的显气孔率有所上升,体积密度略有降低;试样的常温耐压强度、常温抗折强度、1 400℃高温抗折强度、抗热震性和抗氧化性均有不同程度的提高;抗渣侵蚀性以ω(鳞片石墨) ω(矾土基β-SiAlON细粉)为4% 6%的试样略高,其他试样则有所降低.  相似文献   

4.
分别以微孔富镁尖晶石(5~3和3~1 mm)和电熔镁砂(5~3和3~1 mm)为粗骨料,以<1 mm的电熔镁砂为细骨料,以镁砂粉(≤0.088 mm)、鳞片石墨粉(≤0.088 mm)、金属铝粉(≤0.074 mm)为细粉,以酚醛树脂为结合剂,制备了w(C)=6%的两种低碳MgO-C材料,经220和1 500℃(埋焦炭)热处理后,测定其显气孔率、常温耐压强度、常温抗折强度、加热永久线变化率、抗热震性和抗渣性。结果表明:1)用微孔富镁尖晶石骨料取代普通低碳MgO-C材料中的部分镁砂骨料后,经220和1 500℃热处理后试样的显气孔率均比普通低碳MgO-C试样的大,体积密度均比普通低碳MgO-C试样的小;220℃固化后试样的强度比普通低碳MgO-C试样的小,但1 500℃热处理后试样的强度比普通低碳MgO-C试样的大;1 500℃热处理后试样的加热永久线变化率比普通低碳MgO-C试样的小。2)使用微孔富镁尖晶石骨料代替电熔镁砂骨料能有效提高低碳MgO-C材料的抗热震性,但对低碳MgO-C材料的抗侵蚀性不利。  相似文献   

5.
为了提高RH精炼炉用镁铬质耐火材料的使用寿命,以质量分数为80%的电熔镁铬砂(粒度为3~1、≤1、≤0.088 mm)和20%的印度铬矿砂(粒度为≤1和≤0.074 mm)为基础配方,分别用质量分数为2%、4%、6%的活性α-Al2O3微粉(d90=5.376μm)等量取代电熔镁铬砂细粉,外加4%质量分数的亚硫酸纸浆废液为结合剂,经混练、成型、干燥后,分别经1 500、1 600、1 650、1 700和1 750℃热处理,然后检测试样的常温抗折强度、常温耐压强度、烧后永久线变化率、显气孔率、体积密度、高温抗折强度和抗渣性能。结果表明:1)加入α-Al2O3微粉能明显提高试样的常温抗折强度;2)随着α-Al2O3微粉加入量(w)从4%增加到6%,试样的高温抗折强度增加;3)加入6%(w)α-Al2O3微粉可以降低试样的显气孔率,提高其致密度,进而提高试样的综合性能。  相似文献   

6.
以自合成的微孔CA6-MA颗粒(8~5、5~3、3~1 mm)为骨料,以速烧刚玉粉(≤0.074、≤0.043 mm)、α-Al2O3微粉、纯铝酸钙水泥为粉料,经配料、混练、振动成型、养护、烘干后,分别在1 000、1 200、1 400、1 600℃保温3 h热处理,检测热处理后试样的永久线变化、显气孔率、体积密度、常温抗折强度、常温耐压强度、热态抗折强度和热导率,并分析其显微结构。结果表明:1)试样在1 600℃热处理后的永久线变化为1.14%,1 600℃热处理后试样的显气孔率为59.84%,体积密度为1.51 g.cm-3,常温抗折强度为2.7 MPa,常温耐压强度为7.3 MPa,1 400℃的热态抗折强度为1.4 MPa,1 000℃的热导率为0.219 W.m-1.K-1;2)1 600℃热处理后试样基质中有大量片状CA6,骨料和基质之间结合很好。  相似文献   

7.
为解决目前低碳Al2O3-C耐火材料性能下降、寿命缩短等问题,以Zr粉和鳞片石墨为原料,以NaCl和NaF为熔盐介质,在氩气气氛中于1 000℃保温3 h合成了ZrC改性石墨。然后以电熔白刚玉、α-Al2O3粉、Al粉、Si粉、鳞片石墨和ZrC改性石墨为原料,以酚醛树脂为结合剂制备了低碳Al2O3-C耐火材料试样。研究了ZrC改性石墨添加量(加入质量分数分别为0、1%、3%、5%)对低碳Al2O3-C耐火材料的物相组成、显微形貌、物理性能的影响。结果表明:与仅添加鳞片石墨的试样相比,引入1%~3%(w)的ZrC改性石墨可显著提高低碳Al2O3-C耐火材料试样的力学性能,但是当引入5%(w)的ZrC改性石墨时,降低了其性能。添加3%(w)ZrC改性石墨时,试样的力学性能最优,其常温抗折强度和常温耐压强度分别为22.3和97.5 MPa。  相似文献   

8.
在保证承烧锂电池三元正极材料匣钵用β-SiAlON-SiC材料抗碱性的前提下,以SiC颗粒和细粉、Si粉、Al粉、α-Al2O3微粉等为原料,采用高温氮化法制备β-SiAlON-SiC材料,研究了SiO2微粉加入量(外加质量分数分别为0、1%、2%、3%)对β-SiAlON-SiC材料的显气孔率、体积密度、常温抗折强度、高温抗折强度、物相组成、抗碱性的影响。结果表明:1)在β-SiAlON-SiC材料中添加SiO2微粉可以降低其显气孔率,显著提高其常温抗折强度和高温抗折强度;2)添加SiO2微粉不会影响Si粉和Al粉的氮化效果,但会影响Al2O3在Si3N4中的固溶度和β-SiAlON的生成量;3)SiO2微粉的最优添加量为1%(w),所得试样的抗碱性明显优于未添加SiO2微粉试样的。  相似文献   

9.
周萍  马北越  任鑫明 《耐火材料》2023,(2):104-106+112
以菱镁矿尾矿和二次铝灰为原料,按m(菱镁矿尾矿)∶m(二次铝灰)=7∶3配料,混料、成型后分别经1 200、1 300、1 400和1 500℃煅烧,制备了MgO-MgAl2O4-Mg2SiO4试样,并研究了煅烧温度对其性能的影响。结果表明:随着煅烧温度的升高,试样的体积密度和线收缩率随之增大,常温耐压强度基本呈增大的趋势,而显气孔率相应减小;当煅烧温度从1 300℃升高到1 400℃时,显气孔率变化尤为明显,分析认为这与镁铝尖晶石的形成有关。在满足显气孔率超过40%的条件下,试样经1 300℃煅烧后的常温耐压强度较高。因此,最佳煅烧温度为1 300℃。  相似文献   

10.
为了进一步提高镁碳砖的使用性能,在镁碳砖配料中添加质量分数分别为0、0. 5%、1%、1. 5%、2%和2. 5%的Carbores P,经配料、混练、困料后,用630 t电动螺旋压力机压制成200 mm×150 mm×100 mm的样块,于220℃保温16 h固化后,切割成40 mm×40 mm×160 mm和50 mm×50 mm×50 mm试样,分别在1 000和1 500℃埋焦炭热处理3 h,然后检测固化及埋炭热处理后试样的显气孔率和常温耐压强度,以及固化后试样的高温抗折强度和抗氧化性,并由此优选出最佳Carbores P添加量的镁碳砖在某钢厂100 t钢包渣线部位进行了现场使用试验。结果表明:Carbores P加入量对固化试样的显气孔率和常温耐压强度影响不大,高温抗折强度随Carbores P加入量的增加而增大;对埋炭处理试样,添加0. 5%(w) Carbores P的试样显气孔率最低,常温耐压强度最大,抗氧化性最好。添加0. 5%(w) Carbores P的镁碳砖应用在某钢厂100 t钢包渣线部位,侵蚀速率为每炉2. 11 mm,与未添加Carbores P的镁碳砖相比,抗侵蚀性提高了10%。  相似文献   

11.
为了进一步提高Al2O3-SiC-C浇注料的性能,以棕刚玉、碳化硅、沥青、红柱石粉、α-Al2O3微粉、SiO2微粉、Si粉、Al粉、Secar 71水泥为原料制备了Al2O3-SiC-C浇注料,研究了低掺量(质量分数分别为0、1%、2%、3%、5%)红柱石粉(≤0.055 mm)等量替代浇注料中的棕刚玉细粉对浇注料致密度、强度、抗热震性和抗氧化性等的影响。结果表明:随着红柱石粉添加量的增大,烧后试样的显气孔率和体积密度减小,常温抗折强度、高温抗折强度、抗热震性和抗氧化性均增大。  相似文献   

12.
以板状刚玉(粒度≤1、≤0.075 mm)、Al-Si合金粉(粒度为50μm)、α-Al2O3微粉(粒度为5μm)、鳞片石墨(粒度≤0.074 mm)和B4C粉(粒度为20μm)为原料,硝酸镍为催化剂,酚醛树脂为结合剂制备了Al2O3-C材料,研究了B4C添加量(加入质量分数分别为0、3%、6%和9%)对Al2O3-C材料性能的影响。结果表明:1)随着B4C添加量的增加,试样的线变化率明显减小,常温抗折强度和耐压强度明显增大;当B4C添加量为3%(w)时,试样经1 450℃处理后的线变化率降至0.65%,常温抗折强度和耐压强度最高,分别为28.7和57.3 MPa。2)当B4C添加量为6%(w)时,试样经1 400℃空气气氛氧化后的氧化指数降至3.9%,抗氧化能力明显增强。  相似文献   

13.
以高纯熔融石英粉为原料,分别加入相对于熔融石英粉质量1%、2%和3%的纳米ZnO或纳米Y2O3,经50 MPa压力成型后,在还原气氛中,于1 300、1 350和1 400℃保温1 h煅烧后,测定试样的显气孔率和常温抗折强度,并采用SEM分析试样的断口形貌。结果表明:引入纳米ZnO或纳米Y2O3可以明显地促进熔融石英陶瓷的烧结,纳米ZnO可大大提高熔融石英陶瓷材料的抗折强度并显著降低其显气孔率,纳米Y2O3作为熔融石英陶瓷助烧结剂的最佳加入量(w)为2%。  相似文献   

14.
按w(板状刚玉)=84%,w(铝粉)=8%,w(α-Al2O3微粉)=6%,w(鳞片石墨)=2%的配比配料,外加3%热固性酚醛树脂作结合剂,成型后于200℃烘烤24h。在埋炭条件下于600~1400℃保温3h加热处理,冷却后测量试样的线变化率、显气孔率和常温耐压强度,并分析部分试样的孔径分布、相组成和显微结构,同时测定烘烤后试样在600℃、800℃、1000℃、1200℃和1400℃下的热态抗折强度,以分析该材料在加热过程的变化。结果表明,试样在600~1400℃埋炭加热过程中的变化可大致分为3个阶段:1)600~800℃,金属Al于660℃熔化,促进试样致密化,在800℃时已有少量Al4C3和AlN生成,使加热后试样的致密度和强度增大;2)800~1200℃,大量生成Al4C3和AlN,Al4C3和AlN填充在刚玉骨架结构中,试样的显气孔率进一步减小,常温耐压强度和热态抗折强度进一步增大;3)1200~1400℃,金属Al消失,Al4C3含量减少,部分与N2反应转化为AlN,试样的显气孔率略有降低,常温耐压强度和热态抗折强度略有增大。由此可见,随着加热温度的提高,材料的结合方式从碳结合转变为碳和金属铝复合结合,最后逐渐转变为碳和非氧化物复合结合。  相似文献   

15.
为了提高Al_2O_3-SiC-C铁沟浇注料的性能,在其配料中分别引入8~5、5~3、3~1和≤1 mm的红柱石,经成型、养护、干燥后,于1 450℃保温3 h热处理,然后检测试样的显气孔率、体积密度、烧后线变化率、常温抗折强度、弹性模量、抗热震性和抗渣性。结果表明:1)引入红柱石试样的显气孔率和体积密度均比未引入红柱石的小,烧后线膨胀率均比未引入红柱石的大。随着红柱石粒度的减小,显气孔率逐渐减小;体积密度呈先减小后增大的变化趋势,以引入5~3 mm红柱石试样的为最小;烧后线膨胀率呈先增大后减小的变化趋势,以引入5~3 mm红柱石试样的为最大。2)引入8~5 mm红柱石试样的常温抗折强度和弹性模量比未引入红柱石的小,其他试样的基本上比未引入红柱石的大;随着红柱石粒度的减小,试样的常温抗折强度和弹性模量逐渐增大。3)引入红柱石试样的抗热震性均比未引入红柱石的高;随着红柱石粒度的减小,抗热震性逐渐降低。4)各试样仅在渣-样交界处有轻微的侵蚀,引入不同粒度红柱石试样的抗渣性没有明显差别。  相似文献   

16.
为了研究硅溶胶结合Al2O3-SiC-C材料的力学性能,以电熔棕刚玉和碳化硅为主要原料,硅溶胶为结合剂,制备了Al2O3-SiC-C铁沟浇注料,研究了其在110、300、500、700、900、1 100、1 300、1 450℃热处理后的常温物理性能和高温(1 400℃)抗折强度,并借助XRD、SEM等进行物相和显微结构分析。结果表明:随着热处理温度的升高,试样常温强度增加,烧后线变化率增大,体积密度先减小后增大,显气孔率先增大后减小,转折温度在700℃;高温抗折强度超过6 MPa。其原因在于:在中低温下,硅溶胶脱水形成—Si—O—Si—凝胶网络结构,保证了浇注料的中低温强度,700℃时因试样大量脱水而使得显气孔率最大,体积密度最小;在高温下,试样中因形成大量纤维状莫来石而为浇注料提供了较高的常温强度和高温强度。  相似文献   

17.
为了提高Al2O3-Si C-C浇注料在高温使用过程中的体积稳定性,用蓝晶石粉部分替代Al2O3-Si C-C浇注料中的白刚玉粉,研究了蓝晶石加入量(质量分数分别为0、1%、2%、3%、4%、5%和6%)对浇注料经烘干和1 400℃保温3 h热处理后物理性能的影响。结果表明:随着蓝晶石加入量的增加,试样经1 400℃保温3 h热处理后由微收缩逐渐变为微膨胀,体积稳定性以蓝晶石加入量为5%(w)时为最好。经110℃烘24 h后试样的显气孔率、常温耐压强度和常温抗折强度变化都很小,体积密度基本上呈降低趋势;经1 400℃保温3 h热处理后试样的显气孔率基本上呈先升高后降低的变化趋势,体积密度则呈相反的变化趋势,并且均以蓝晶石加入量3%(w)为拐点;常温耐压强度和常温抗折强度略有降低,但降低幅度很小。同一配比的试样,1 400℃保温3 h热处理后的体积密度、显气孔率、常温耐压强度、常温抗折强度均比经110℃烘24 h后的高。XRD、SEM和EDS分析表明,蓝晶石发生了一次莫来石化反应而产生体积膨胀,有效缓解了试样的烧结收缩,使试样具有较好的体积稳定性。  相似文献   

18.
为实现工业废渣的有效利用,以工业镁渣、氧化铝为主要原料,加入4%(w)的PVA塑化剂,采用高温无压烧结法分别在1 300、1 400、1 500、1 600℃保温3 h后,得到六铝酸钙/钙铝黄长石(CA6/C2AS)复相耐火材料,研究热处理温度对其物相组成、物理性能的影响。结果表明:经1 500℃热处理3 h后的试样综合性能较优,其体积密度为1.59 g·cm-3,显气孔率为52.7%,抗折强度为30.8 MPa,荷重软化温度为1 544℃,水化36 h后质量增加率不高于0.22%,800℃热震后抗折强度保持率为52.7%。试样具有较好的结构稳定性、抗水化性和抗热震性。  相似文献   

19.
以TiO2粉、鳞片石墨和Si粉为原料,采用碳热还原氮化法在1 450℃保温2 h制备了陶瓷相结合Ti(C,N)复合材料。研究了Si粉加入量(加入质量分数分别为0、5%、15%、25%)对材料物相组成、显微结构、物理性能及抗氧化性的影响。结果表明:适量Si粉的引入有利于细化Ti(C,N)晶粒,提高Ti(C,N)复合材料的常温力学性能与抗氧化性。当Si粉加入量为5%(w)时,原位生成陶瓷相结合Ti(C,N)复合材料的综合性能较优,其显气孔率、常温抗折强度和常温弹性模量分别约为(38.8±1.6)%、(62.5±2.4)MPa及(59.6±2.2)GPa。随Si粉加入量(w)进一步增加至15%或25%,复合材料的体积密度和力学性能下降。  相似文献   

20.
以电熔棕刚玉为骨料,电熔棕刚玉粉、活性α-Al2O3微粉、黑碳化硅粉、球状沥青、SiO2微粉、纯铝酸钙水泥等为基质料,配以质量分数为2%、2.3%、2.6%、2.9%的复合抗氧化剂,搅拌均匀制备成Al2O3-SiC-C质浇注料。外加5%(w)的水搅拌3~5 min后,检测浇注料的流动性;经振动成型、养护、脱模、干燥后,于1 500℃空气气氛中热处理3 h,测定热处理后试样的质量损失率、体积密度、显气孔率、常温耐压强度、常温抗折强度和抗热震性。结果表明:随着复合抗氧化剂加入量(w)从2%增加到2.9%,浇注料的流动性变化不大并且保持较高的水平,显气孔率、体积密度和常温强度变化不大,质量损失率从1.14%减小到0.35%,氧化层厚度逐渐减小;复合抗氧化剂加入量为2.9%(w)的试样热震后耐压强度仍保持在70 MPa左右,具有较好的抗热震性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号