共查询到20条相似文献,搜索用时 93 毫秒
2.
随着深度学习的持续发展,近年来用于手写汉字的识别也有了极大的突破,但现有的许多方法参数众多、运算量较大、模型架构庞大且相对复杂,所需存储容量大,对实验的环境要求较高。针对以上问题,提出了基于MobilenetV2的汉字识别,采用深度可分离卷积,相对于其他的网络模型,在运算量、模型架构等问题上化繁为简,且MobilenetV2网络模型是在MobilenetV1的基础上进行改进的,增加了线性瓶颈和倒残差。一是扩充了通道数用来提取更多的特征信息,二是使用线性函数替换ReLU用来降低变换过程中信息的损失率。适合于移动设备设计,通过大型中间张量来显著减少内存占用,其综合识别的准确率可以达到92%以上。 相似文献
3.
随着计算机视觉技术的迅速发展以及人们对于建设智慧城市的渴望,车辆重识别技术取得了不小的突破。它可以助力于搜寻救援、打击犯罪等诸多领域。深度学习及神经网络为该项任务突破传统特征的瓶颈带来了可能,而随着各种大规模数据集的提出,越来越多的学者关注到了此项任务,并成为当下的研究热点。本文对车辆重识别任务的兴起、发展及现状进行了一定的归纳总结,提出了现有技术下的一些不足,并对未来的发展做出了一些思考与预测。 相似文献
4.
5.
石油油品在一定的激发光照射下可产生相当强度的三维荧光光谱,是鉴别和分析石油污染物的重要依据。由于石油油品的荧光光谱特征复杂、数据庞大,不宜直接用数学模型描述,也不宜简单依靠人工观察分析。因此,根据深度学习的卷积神经网络(CNN)理论提出了一种直接利用石油油品原始荧光数据进行CNN建模的方法,利用其强大的非线性运算能力、自适应表示学习能力,自动隐性地从训练数据中进行特征学习,实现水环境中石油污染物种类识别。通过大量的荧光实验构建了石油油品(汽油、机油、柴油)的训练和验证光谱数据集,基于Python深度学习框架Keras建立了CNN模型,并对CNN模型在光谱数据集上进行了训练、验证与测试实验,实现了被测油品的种类判别。实验结果表明:该CNN模型对3种油品的训练集与验证集三维荧光光谱的分类准确率都达到了99.76%,综合测试分类准确率达到82.65%,对单物质分类准确率为100%,验证了三维荧光技术结合深度学习算法能够实现对石油油品准确可靠的判别分类,也为进一步研究基于深度学习的水环境污染物智能识别系统提供了技术支持,为环境检测提供了一种新思路与新方法。 相似文献
6.
当前深度学习已成为表情识别领域的重要研究方法,但此方法应用于真实环境或者复合表情数据库下时识别准确率非常低下,为此提出一种深度局部关联神经网络DLR-VGGNet(Deep Locality-Relevance VGGNet)的可靠表情数据识别方法,首先在VGGNet网络添加一个新的监督层,即局部关联损失(LRloss),提高深层特征的判别能力,之后在不同的人脸表情数据库中基于这种 DLR-VGGNet网络进行训练并且进行网络参数微调和测试。最后,RAF-DB数据库中对 7类基本表情和11类复合表情做基准实验以及在SFEW和CK+数据库中做对比实验。实验结果表明在真实环境基于DLR-VGGNet的方法优于传统的手工特征提取方法。 相似文献
7.
8.
在公共场所佩戴口罩,是防止新型冠状病毒传染的最主要手段,在必要的场所,每个人都必须佩戴口罩以进行自我保护。在人群相对集中的公共场所,相互之间不可避免地存在遮挡干扰,从而产生了小范围内的复杂干扰识别问题。如果使用单一的卷积神经网络对口罩佩戴进行识别,有可能造成提取关键特征信息时聚焦度欠缺,出现特征提取不足等问题。因此本文提出一种两渠道卷积神经网络的佩戴口罩识别方法。在卷积神经网络的基础上,通过2个输入渠道,分别对眼睛区域和眼睛以下的区域,进行特征提取;最后通过基于决策层的信息融合方法,将2个渠道的识别结果加以融合,从而得到最终的识别结果,其平均识别准确率达到了98.8%。经过实验验证,该方法在佩戴口罩的识别上,取得了较好的识别准确率。 相似文献
9.
本文提出了一种基于YOLOv3算法的运动车辆与静止车辆的识别方法.其利用卷积神经网络提取运动车辆与静止车辆的特征,对网络的输出层Softmax进行修改,并通过大量实验优化权重模型参数;利用AICITY CHALLENGE数据集制作训练和检测数据库.测试结果表明,改进后的YOLOv3算法能更好地识别多种现实生活场景中的运动车辆与静止车辆,取得了95.55%的mAP与34.7 frame/s的检测速度,具有很好的检测性能与实时性;检测精度达到了98%,足够满足实用需求. 相似文献
10.
11.
手语识别涉及计算机视觉、模式识别、人机交互等领域,具有重要的研究意义与应用价值。深度学习技术的蓬勃发展为更加精准、实时的手语识别带来了新的机遇。该文综述了近年来基于深度学习的手语识别技术,从孤立词与连续语句两个分支展开详细的算法阐述与分析。孤立词识别技术划分为基于卷积神经网络(CNN)、3维卷积神经网络(3D-CNN)和循环神经网络(RNN) 3种架构的方法;连续语句识别所用模型复杂度更高,通常需要辅助某种长时时序建模算法,按其主体结构分为双向长短时记忆网络模型、3维卷积网络模型和混合模型。归纳总结了目前国内外常用手语数据集,探讨了手语识别技术的研究挑战与发展趋势,高精度前提下的鲁棒性和实用化仍有待于推进。
相似文献12.
针对现有深度学习分类方法对稳态视觉诱发电位相位与频率信息利用不充分的问题,该文提出一种用于稳态视觉诱发电位(SSVEP)分类的卷积神经网络模型。该模型以经过快速傅里叶变换后的复向量作为输入,首先对各个导联的实部向量和虚部向量进行卷积,学习相位信息;随后引入空间注意力机制,对判别频率信息进行增强;然后使用2维卷积和最大池化层进一步提取空域和频域信息;最后使用全连接层进行分类。实验结果表明利用该方法在跨受试情况下准确率可达到81.21%,通过在训练集增加标准正弦信号模板准确率可进一步提升至83.17%,相比典型相关分析方法获得了更好的分类效果。 相似文献
13.
基于深度学习的YOLO目标检测综述 总被引:1,自引:0,他引:1
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4, YOLOv5, Scaled-YOLOv4, YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。 相似文献
14.
关节点行为识别由于其不易受外观影响、能更好地避免噪声影响等优点备受国内外学者的关注,但是目前该领域的系统归纳综述较少。该文综述了基于深度学习的关节点行为识别方法,按照网络主体的不同将其划分为卷积神经网络(CNN)、循环神经网络(RNN)、图卷积网络和混合网络。卷积神经网络、循环神经网络、图卷积网络分别擅长处理的关节点数据表示方式是伪图像、向量序列、拓扑图。归纳总结了目前国内外常用的关节点行为识别数据集,探讨了关节点行为识别所面临的挑战以及未来研究方向,高精度前提下快速行为识别和实用化仍然需要继续推进。 相似文献
15.
该文针对探地雷达(GPR) 2维剖面图像中目标特征提取困难及其识别精度较低等问题,采用深度学习方法来提取2维剖面图像中目标的特征双曲线。根据GPR工作的物理机制,设计了一种级联结构的卷积神经网络(CNN),先检测并去除回波数据中的直达波干扰信号,再利用CNN得到B扫描(B-SCAN)图像的特征图,并对特征信号进行分类识别以提取目标的特征双曲线。同时,为处理各种干扰信号影响目标特征双曲线结构完整性的问题,提出了一种基于方向引导的特征数据补全方法,提高了目标特征双曲线识别的准确率。与方向梯度直方图(HOG)算法、单级式目标检测(YOLOV3)算法和更快速的区域卷积神经网络(Faster RCNN)算法相比,在综合评价指标F上该文方法的检测结果是最优的。 相似文献
16.
针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快速的特征提取与学习;然后采用改进的多层次空间金字塔池化算法对提取的纸币特征实现固定大小的输出表示;最后通过网络全连接层和softmax层实现纸币图像分类。实验结果表明,该算法在分类性能、泛化能力与稳定性上明显优于常用的纸币分类算法;同时该算法也能够满足纸币清分系统的实时性要求。 相似文献
17.
18.
目前大部分图像去雾算法只在一种或几种均匀雾图数据集中有较好的表现,对于不同风格或非均匀雾图数据集去雾效果较差,同时算法在实际应用中会因模型泛化能力差导致模型场景受限。针对上述情况,该文提出一种基于迁移学习的卷积神经网络(CNN)用于解决去雾算法中非均匀雾图处理效果不佳和模型泛化能力差等问题。首先,该文使用ImageNet预训练的模型参数作为迁移学习模型的初始参数,以加速模型训练收敛速度。其次,主干网络模型由3个子网组成:残差特征子网络、局部特征提取子网络和整体特征提取子网络。3子网结合以保证模型可从整体和局部两个方面进行特征提取,在现实雾场景(浓雾、非均匀雾)中获得较好的去雾效果。该文在模型训练效率、去雾质量和雾图场景选择灵活性3个方面进行了研究和改进,为衡量模型性能,模型选择在去雾难度较大的非均匀雾图数据集NTIRE2020和NTIRE2021上进行定量与定性实验。实验结果证明3子网模型在图像主观和客观评价指标两个方面都取得了较好的效果。该文模型改善了算法泛化性能差和小数据集难以进行模型训练的问题,可将该文成果广泛应用于小规模数据集和多变场景图像的去雾工作中。 相似文献
19.
为了提高单通道语音分离性能,该文提出基于深度学习特征融合和联合约束的单通道语音分离方法。传统基于深度学习的分离算法的损失函数只考虑了预测值和真实值的误差,这使得分离后的语音与纯净语音之间误差较大。该文提出一种新的联合约束损失函数,该损失函数不仅约束了理想比值掩蔽的预测值和真实值的误差,还惩罚了相应幅度谱的误差。另外,为了充分利用多种特征的互补性,提出一种含特征融合层的卷积神经网络(CNN)结构。利用该CNN提取多通道输入特征的深度特征,并在融合层中将深度特征与声学特征融合用来训练分离模型。由于融合构成的特征含有丰富的语音信息,具有强的语音信号表征能力,使得分离模型预测的掩蔽更加准确。实验结果表明,从信号失真比(SDR) 、主观语音质量评估( PESQ)和短时客观可懂度(STOI)3个方面评价,相比其他优秀的基于深度学习的语音分离方法,该方法能够更有效地分离目标语音。 相似文献
20.
由于动态手势数据具有时间复杂性以及空间复杂性,传统的机器学习算法难以提取准确的手势特征;现有的动态手势识别算法网络设计复杂、参数量大、手势特征提取不充分。为解决以上问题,该文提出一种基于卷积视觉自注意力模型(CvT)的多尺度时空特征融合网络。首先,将图片分类领域的CvT网络引入动态手势分类领域,用于提取单张手势图片的空间特征,将不同空间尺度的浅层特征与深层特征融合。其次,设计一种多时间尺度聚合模块,提取动态手势的时空特征,将CvT网络与多时间尺度聚合模块结合,抑制无效特征。最后为了弥补CvT网络中dropout层的不足,将R-Drop模型应用于多尺度时空特征融合网络。在Jester数据集上进行实验验证,与多种基于深度学习的动态手势识别方法进行对比,实验结果表明,该文方法在识别率上优于现有动态手势识别方法,在动态手势数据集Jester上识别率达到92.26%。 相似文献