首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对YOLO V3算法中对于小目标检测精度不高、容易出现漏检误检的问题,提出了一种基于改进YOLO V3的舰船目标检测算法.首先,通过在YOLO V3原网络结构基础上额外从主干网络引出一个输出尺度,将其与上一个输出尺度中的特征信息进行特征拼接,得到具有更丰富语义信息的特征向量;其次,基于数据集进行聚类改进,改进度量距离...  相似文献   

2.
如何高效地检测出火灾初期的火源并对其进行准确定位,是有效遏制火情恶化和及时制定消防计划的重要前提.目前火源检测定位所面临的主要问题为火源检测与定位双任务相互分离,这严重制约了火灾预警的实时性.为了克服上述问题,提出以YOLO V5作为火源检测基础模型,同时利用CIOU(Complete intersection over union)损失函数对anchor(anchor-boxes)与GT(Ground Truth)进行精准框定以进一步提高模型标注精度,并将Leaky RELU激活函数替换为正则化和激活函数相结合的GELU(Gaussian Error Linear Unit).另外,在准确检测出火源的同时,采用平行双目定位算法对火源进行空间定位,以实现火源检测与定位的智能一体化.实验结果表明,所提方法的火源检测m AP值比原始算法提高了9.8%,在保证检测火源精确性的同时能准确定位火源位置.  相似文献   

3.
基于CFAR级联的SAR图像舰船目标检测算法   总被引:1,自引:0,他引:1  
SAR图像舰船目标检测在军事监视和海洋环境监管等方面有着重要的意义。针对SAR图像的特点,提出了一种基于全局CFAR检测与局部CFAR检测级联的舰船目标检测算法。在全局CFAR检测中,通过海杂波特性拟合优选海杂波统计模型,以较高的虚警率筛选潜在的目标点;在局部CFAR检测中,以潜在目标点的连通区域为单位,通过检测窗口的选取、背景像素的确定和海杂波拟合等步骤以后,以较低的虚警率确定目标。最后,通过条件扩张算法和目标像素聚类完善船只细节。实验结果表明,文中算法在保证良好的检测性能的同时,具有检测效率高、舰船细节完整等优点,为舰船目标鉴别和信息提取提供了良好的保障,更加符合实际应用需求。  相似文献   

4.
SAR图像舰船目标检测算法的对比研究   总被引:8,自引:0,他引:8  
种劲松  朱敏慧 《信号处理》2003,19(6):580-582
SAR图像舰船目标检测有二种经典算法:双参数CFAR算法和K-分布CFAR算法。本文分析了二种算法的特点,使用RADARSAT卫星不同模式SAR图像分别进行实验,给出二种算法的适应性。  相似文献   

5.
近年来,合成孔径雷达成像技术因具备全天时和全天候的目标感测能力,在海洋实时监测和管控等领域发挥着重要作用,特别是高分率SAR图像中的舰船目标检测成为当前的研究热点之一.首先分析基于深度学习的SAR图像舰船目标检测流程,并对样本训练数据集的构建、目标特征的提取和目标框选的设计等关键步骤进行归纳总结.然后对检测流程中的各部...  相似文献   

6.
SAR图像点目标的检测   总被引:1,自引:6,他引:1  
分析了在均匀杂波回波功率服从 Gamma分布条件下 SAR点目标检测 ,推导了点目标虚警概率和检测概率与阈值系数关系 ,提出了检测点目标阈值系数选择根据和方法。在杂波均值估计方面 ,提出了以全局均值代替局部动态均值。实际测试结果表明所提出的检测方法在检测效果和计算量方面都优于双参数恒虚警检测算法  相似文献   

7.
张佳欣  王华力 《信号处理》2021,37(9):1623-1632
针对目标检测算法直接应用于SAR图像舰船检测数据集时数据训练不充分、鲁棒性差等问题,本文提出了一种改进YOLOv3的SAR图像舰船目标检测方法,从改进网络训练策略的角度出发,提升算法对不同舰船目标的适应性,优化算法的检测性能。改进主要包括两个方面:一方面本文在YOLOv3的基础上引入了ATSS(Adaptive Training Sample Selection)正负样本的分配方法,提高YOLOv3中正负样本选择的质量,优化网络训练。另一方面本文设计了基于特征层的锚框超参数优化方法,使锚框更加贴合各检测层数据集样本分布,从而使训练模型更好的收敛。本文分别在SSDD、SAR-Ship-Dataset数据集上进行了实验,验证了其有效性。   相似文献   

8.
SAR图像舰船及其尾迹检测研究综述   总被引:21,自引:2,他引:21       下载免费PDF全文
种劲松  朱敏慧 《电子学报》2003,31(9):1356-1360
近年来,利用合成孔径雷达(SAR)图像进行舰船检测的研究在海洋遥感领域得到高度重视.本文回顾了SAR图像舰船及其尾迹检测的起源与发展,分析了影响舰船和尾迹的物理因素,分别对舰船检测算法和尾迹检测算法进行综述、总结和对比,并对今后的研究发展方向进行展望.  相似文献   

9.
杨文  孙洪  管鲍  王晓军 《信号处理》2003,19(Z1):370-373
特征分析是目标检测与识别的关键,也是图像解译的经典课题之一.本文分析了合成孔径雷达图像目标识别系统各阶段常用的特征,并提出了几个新的具有鲁棒性的特征,从而为SAR图像目标检测和分类提供了良好的基础.  相似文献   

10.
在基于合成孔径雷达(SAR)图像的舰船目标检测中,针对图像背景复杂、舰船尺寸大小不一等问题,提出了一种改进的YOLOv3深度卷积神经网络(CNN),用于SAR图像中的舰船目标检测。该方法基于训练数据集中的尺寸标签信息,使用交并比作为距离度量,利用k-means聚类方法为舰船目标提取了九组先验锚点框作为后续候选框边框参数优化的初始值;引入rGIOU来代替交并比rIOU,用于更新框回归损失和置信度损失,从而得到更加合理的损失函数,能将候选框与标注框之间的相对位置信息引入候选框的边框参数优化。为了验证改进版YOLOv3网络的性能,文中基于高分辨SAR舰船检测数据集AIR-SARShip-2.0,利用平移、翻转、调整亮度等方法进行数据集扩充,得到训练数据集和测试数据集,并进行舰船目标检测实验。实验结果表明:相较于常规YOLOv3网络和Faster R-CNN网络,改进YOLOv3网络在舰船目标检测上的总体效果更好,具有更高的准确率和更少的虚警,提高了平均精度指标,且需要的计算时间更少。  相似文献   

11.
在研究了SAR图像中分布式目标在其所占有的各分辨单元间的二维位置相关信息的基础上,提出了一种SAR图像中分布目标的检测方法。根据二维情形下的不同距离定义,提出了算法的几种形式。计算机仿真结果、处理真实SAR图像数据的试验结果和性能分析表明了该方法比经典的恒虚警检测算法更有效、更优越。通过比较不同的距离定义下检测算法的性能和运算复杂度,得出了最优的距离定义形式。  相似文献   

12.
王恒涛  张上 《电光与控制》2023,(5):99-104+110
精准的舰船目标检测技术能够提升武器装备的全方位感知能力。针对复杂环境下SAR舰船目标检测虚警、漏警问题严重,提出一种基于YOLOv5的轻量化SAR图像舰船目标检测算法3S-YOLO。3S-YOLO首先对网络结构进行重构,调节感受野与多尺度融合关系,实现特征提取网络和特征融合网络轻量化处理;然后,对网络进行剪枝,通过基于几何中值的剪枝算法对网络进行压缩,加快推理速度;最后,使用可变焦损失函数对网络进行训练,使感知分类系数回归。结果表明,算法经过优化后,精度最高可提高至99.1%;经过剪枝后,模型体积大幅下降,可压缩至190 kiB,下降98.6%;算法推理速度提升4倍,推理时间缩短至3 ms以下。相较于当前主流算法,3S-YOLO在各方面均取得了不错的成绩,满足SAR图像实时舰船目标检测。  相似文献   

13.
合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测紧贴军事和民用需求,为海洋监视提供重要信息支撑.针对复杂大场景SAR图像,本文设计了一种基于级联网络的舰船目标检测框架,该网络框架主要由D-BiSeNet海陆分割、分块区域筛选和CP-FCOS目标检测三部分组成.通过改进双边网络(D...  相似文献   

14.
SAR图像目标检测研究综述   总被引:4,自引:1,他引:4  
SAR图像目标检测是SAR ATR(自动目标识别)的关键步骤,也是近年来SAR图像解译应用的一大研究热点.在广泛文献调研的基础上,本文从SAR图像目标检测的历史沿革、研究现状开始,综述了SAR图像目标检测的研究进展及存在问题,指出了该技术领域的发展趋势.  相似文献   

15.
针对SAR图像固有的乘性斑噪,把概率竞争网络用于SAR图像分割和水上目标检测,充分利用了图像像素间的空间邻接关系,提高了分割、检测的准确性和有效性,取得较好的结果。  相似文献   

16.
合成孔径雷达图像舰船目标检测与分析   总被引:3,自引:0,他引:3  
舰船检测是合成孔径雷达图像海洋应用的一个重要部分。本文设计了舰船检测步骤,给出了SAR图像舰船形状分析的方法,对于舰船目标进行自动检测并计算出舰船参数,通过实验验证目标的检测与分析是有效的。  相似文献   

17.
基于深度学习的YOLO目标检测综述   总被引:1,自引:0,他引:1  
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4, YOLOv5, Scaled-YOLOv4, YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。  相似文献   

18.
如何快速而准确地检测出SAR图像中的目标是一个极富挑战性的课题.利用图像边缘特征和模糊集理论设计了一种快速有效的SAR图像目标检测算法.该算法先利用模糊软阈值小波降噪方法去除相干斑噪声,然后用模糊边缘检测器检测出降噪图像的边缘,最后利用形态学操作算子提取出边缘图中的目标区域.与基于亮度特征以及基于纹理特征的检测算法相比,提出的检测算法能够快速、准确地检测出目标,而且产生的虚警数量较少.SAR实测数据的实验结果表明,提出的算法是有效的且具有很好的应用前景.  相似文献   

19.
提出了一种递增结构能量参数的Markov随机场模型的合成孔径雷达图像目标检测算法,利用模拟退火优化方法,获得最大后验概率准则下的目标检测结果。实验结果表明,该算法不仅能有效减少斑点噪声及背景杂波的影响,而且还可以排除具有较强回波的角反射器的干扰。  相似文献   

20.
黄琼男  朱卫纲  李永刚 《电讯技术》2021,61(11):1451-1458
算法和数据是影响深度学习技术发展的两大关键因素,大多数学者专注于算法的改进和开拓,仅有少部分学者致力于数据的研究.构建合成孔径雷达(Synthetic Aperture Radar,SAR)图像舰船数据集是SAR舰船目标检测项目的第一步,也是星载SAR图像实际工程应用的基础.分析了影响SAR舰船目标检测性能的关键因素,阐述了SAR舰船数据集的构建方法,概述了TerraSAR-X、"哨兵"1号(Sentinel-1)和高分三号(GF-3)三种SAR图像数据源,并对几种公开的SAR舰船数据集进行梳理与分析,总结了各数据集的发展历程,最后指出构建SAR图像舰船数据集仍需考虑的几个方面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号