首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.  相似文献   

2.
Li J  An L  Lu C  Liu J 《Nano letters》2006,6(2):148-152
We have observed that the hexagonal GaN nanowires grown from a simple chemical vapor deposition method using gallium metal and ammonia gas are usually gallium-doped. By annealing in air, the gallium-doped hexagonal GaN nanowires could be completely converted to beta-Ga(2)O(3) nanowires. Annealing the beta-Ga(2)O(3) nanowires in ammonia could convert them back to undoped hexagonal GaN nanowires. Field effect transistors based on these three kinds of nanowires were fabricated, and their performances were studied. Because of gallium doping, the as-grown GaN nanowires show a weak gating effect. Through the conversion process of GaN nanowires (gallium-doped) --> Ga(2)O(3) nanowires --> GaN nanowires (undoped) via annealing, the final undoped GaN nanowires display different electrical properties than the initial gallium-doped GaN nanowires, show a pronounced n-type gating effect, and can be completely turned off.  相似文献   

3.
Erbium doped β-Ga(2)O(3) nanowires and microwires have been obtained by a vapour-solid process from an initial mixture of Ga(2)O(3) and Er(2)O(3) powders. X-ray diffraction (XRD) analysis reveals the presence of erbium gallium garnet as well as β-Ga(2)O(3) phases in the microwires. Scanning electron microscopy (SEM) images show that the larger microwires have a nearly rectangular cross-section. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis show good crystal quality of the β-Ga(2)O(3) nanowires. The nanostructures have been studied by means of the cathodoluminescence technique in the scanning electron microscope. Er intraionic blue, green and red emission lines are observed in luminescence spectra even at room temperature, which confirms the optical activity of the rare earth ions in?the grown structures. Mapping of the main 555?nm emission intensity shows a non-homogeneous distribution of Er ions in the microstructures.  相似文献   

4.
We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.  相似文献   

5.
Zigzag and helical beta-Ga(2)O(3) one-dimensional nanostructures were produced by thermal evaporation of gallium oxide in the presence of gallium nitride. High-resolution TEM analysis indicates that each individual zigzag nanostructure has a periodic arrangement of three distinct blocks: two structurally perfect blocks mirrored with respect to each other on the (002) plane, and one stacking-fault-rich block sandwiched between them. In a zigzag nanostructure, the growth orientation of a beta-Ga(2)O(3) crystal changes alternately in three blocks. The zigzag nanostructure as a whole has the [001] axial direction. In addition to zigzag nanostructures, single-crystalline helical nanowires were also obtained.  相似文献   

6.
X.M. Cai  M.H. Xie 《Thin solid films》2006,515(3):984-989
The growth of GaN nanowires from Ga and NH3 sources in the flow of Ar carrier gas using a chemical vapor deposition (CVD) system was systematically studied. The substrates used were Si(111) and Si(100). Fabricated nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). We investigated the influence of growth temperature, catalyst used, Ga amount, and the ratio of Ar and NH3 flow rates on the morphology and properties of GaN nanowires. We found that the best results were obtained for a growth temperature of 950 °C. Optimal catalysts were Au and metallic Ni, while the use of nickel nitrate was found to lead to formation of SiOx nanowire bunches in addition to GaN nanowires. For the optimal temperature and catalyst used, the influence of the Ga to N ratio on the nanowire growth was studied. It was found that different types of nanostructures are observed in relatively Ga-rich and in relatively N-rich conditions. Growth mechanisms of different types of nanowires, including the stacked-cone nanowires and the microscale structures formed by lateral growth under N-rich conditions, are discussed.  相似文献   

7.
γ-Al(2)O(3) is a well known catalyst support. The addition of Ce to γ-Al(2)O(3) is known to beneficially retard the phase transformation of γ-Al(2)O(3) to α-Al(2)O(3) and stabilize the γ-pore structure. In this work, Ce-doped γ-Al(2)O(3) nanowires have been prepared by a novel method employing an anodic aluminium oxide (AAO) template in a 0.01 M cerium nitrate solution, assisted by urea hydrolysis. Calcination at 500?°C for 6 h resulted in the crystallization of the Ce-doped AlOOH gel to form Ce-doped γ-Al(2)O(3) nanowires. Ce(3+) ions within the nanowires were present at a concentration of < 1 at.%. On the template surface, a nanocrystalline CeO(2) thin film was deposited with a cubic fluorite structure and a crystallite size of 6-7 nm. Characterization of the nanowires and thin films was performed using scanning electron microscopy, transmission electron microscopy, electron energy loss spectroscopy, x-ray photoelectron spectroscopy and x-ray diffraction. The nanowire formation mechanism and urea hydrolysis kinetics are discussed in terms of the pH evolution during the reaction. The Ce-doped γ-Al(2)O(3) nanowires are likely to find useful applications in catalysis and this novel method can be exploited further for doping alumina nanowires with other rare earth elements.  相似文献   

8.
High purity and single crystalline beta-Ga2O3 nanomaterials with various morphologies were obtained through the simple thermal evaporation of metal gallium powder on a gold-coated silicon substrate in argon. In this report, the growth behavior of the beta-Ga2O3 nanomaterials as a function of synthesis time and source material supply was delicately surveyed via FESEM and HRTEM. The synthesis time and source material supply affected morphology, growth rate and growth mechanism of the grown nanomaterials. It was confirmed that the growth mechanism of the beta-Ga2O3 nanomaterials was varied in the order of VLS, combination of VLS and VS, and VS, by increasing the synthesis time without regard to the supply of the source material. When the source materials supply was increased, many beta-Ga2O3 nanomaterials with various morphologies, such as sheet, triangle, and belt-like were appeared. It was confirmed that the oxidation reaction of gallium and oxygen for the formation of gallium oxide nanomaterials carried out the precipitation of gallium at the same time due to the supersaturation of the gallium atoms in gold catalyst. The growth and formation mechanism of the beta-Ga2O3 nanomaterials are discussed herein.  相似文献   

9.
Kuo CL  Huang MH 《Nanotechnology》2008,19(15):155604
We report the growth of ultralong β-Ga(2)O(3) nanowires and nanobelts on silicon substrates using a vapor phase transport method. The growth was carried out in a tube furnace, with gallium metal serving as the gallium source. The nanowires and nanobelts can grow to lengths of hundreds of nanometers and even millimeters. Their full lengths have been captured by both scanning electron microscope (SEM) and optical images. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images have been used to study the crystal structures of these nanowires and nanobelts. Strong blue emission from these ultralong nanostructures can be readily observed by irradiation with an ultraviolet (UV) lamp. Diffuse reflectance spectroscopy measurements gave a band gap of 4.56?eV for these nanostructures. The blue emission shows a band maximum at 470?nm. Interestingly, by annealing the silicon substrates in an oxygen atmosphere to form a thick SiO(2) film, and growing Ga(2)O(3) nanowires over the sputtered gold patterned regions, horizontal Ga(2)O(3) nanowire growth in the non-gold-coated regions can be observed. These horizontal nanowires can grow to as long as over 10?μm in length. Their composition has been confirmed by TEM characterization. This represents one of the first examples of direct horizontal growth of oxide nanowires on substrates.  相似文献   

10.
Micrometer-scale hollow spheres self-assembled by GaOOH nanorods were synthesized under hydrothermal conditions using gallium nitrate and sodium hydroxide as starting materials. The structures and morphologies of the products were studied by X-ray diffraction and scanning electron microscopy. Time-dependent experiments revealed three stages involved in the process of reaction including the initial stage of formation of surfactant vesicles which can be considered as soft templates, followed by the nucleation of GaOOH nanoclusters, and the assembling and growth of nanorods under the modulation of the spherical vesicles. The growth kinetics of the GaOOH nanorods was systematically investigated. Based on the experimental observation, a template-mediated assembling mechanism was proposed. We further demonstrated that the GaOOH nanorods could be converted to gallium oxide (beta-Ga2O3) nanorods by calcination without changing the spherical morphology of the assemblies.  相似文献   

11.
Hsieh CH  Chang MT  Chien YJ  Chou LJ  Chen LJ  Chen CD 《Nano letters》2008,8(10):3288-3292
Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices.  相似文献   

12.
Vertical single-crystal ZnO nanowires with uniform diameter and uniform length were selectively grown on ZnO:Ga/glass templates at 600/spl deg/C by a self-catalyzed vapor-liquid-solid process without any metal catalyst. It was found that the ZnO nanowires are grown preferred oriented in the [002] direction with a small X-ray diffraction full-width half-maximum. Photoluminescence, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy measurements also confirmed good crystal quality of our ZnO nanowires. Field emitters using these ZnO nanowires were also fabricated. It was found that threshold field of the fabricated field emitters was 14 V//spl mu/m. With an applied electric field of 24 V//spl mu/m, it was found that the emission current density was around 0.1 mA/cm/sup 2/.  相似文献   

13.
Hsieh CH  Chou LJ  Lin GR  Bando Y  Golberg D 《Nano letters》2008,8(10):3081-3085
A novel metal-insulator heterostructure made of twinned Ga2O3 nanowires embedding discrete gold particles along the twin boundary was formed through a reaction between gold, gallium, and silica at 800 degrees C during simple thermal annealing. The Au-in-Ga2O3 peapods spontaneously crystallized under phase separation induced by the formation of twin boundaries. The nanostructures were analyzed by field emission scanning (FESEM) and transmission electron microscopes (FETEM), and their photoresponse was investigated using a double-frequency Nd:YAG laser with a wavelength of 532 nm on a designed single-nanowire device. The surface plasmon resonance (SPR) effects of embedded Au nanoparticles are proposed to be responsible for the remarkable photoresponse of these novel structures.  相似文献   

14.
Chen YC  Wang CH  Lin HY  Li BH  Chen WT  Liu CP 《Nanotechnology》2010,21(45):455604
A new process for making single crystalline undoped and Ga-doped ZnS nanowires with simple evaporation and condensation procedures on Si and GaN is introduced. The process does not need additional catalysts or precursors. The growth mechanism is studied using transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. TEM images show that the undoped ZnS nanowires exhibit an ordinary straight morphology, whereas the Ga-doped nanowires are composed of aligned hexagonal platelets, connected in the center into nanowires to maximize surface area. The Ga 2p3 and S 2p peaks in the XPS results confirm the presence of Ga doping in the form of Ga-S bonding. Raman spectra show that the ZnS LO peak is red-shifted from 349 to 347 cm(-1), indicative of a tensile stress caused by the Ga dopants. The growth mechanism and photocatalytic activity of the Ga-doped ZnS nanowires are discussed. We also demonstrate the excellent photocatalytic activity of Ga-doped ZnS nanowires as compared to those of undoped ZnS nanowires and Ga-doped ZnS nanosheets.  相似文献   

15.
Large-scale GaN nanowires were successfully synthesized through ammoniating Ga2O3/Pd films sputtered on the sapphire(001) substrates. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence and Raman spectrum were used to characterize the specimens. The results demonstrate that nanowires are single crystal with hexagonal wurtzite structure and have good optical properties. Raman scattering appears broadened and asymmetric compared with those of bulk GaN due to its polycrystalline nature. In addition, the growth mechanism of GaN nanowires is briefly discussed.  相似文献   

16.
Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.  相似文献   

17.
Tao X  Li X 《Nano letters》2008,8(2):505-510
Mg2B2O5 nanowires with (010) twins were synthesized for the first time using a catalyst-free method. The microstructure of the Mg2B2O5 nanowires has been extensively studied by cross-sectional high-resolution transmission electron microscopy. Nanoindentation tests were performed directly on individual nanowires to probe their mechanical properties. It was found that the twinned Mg2B2O5 nanowires achieve comparable hardness but 19% decrease in elastic modulus compared to their bulk counterpart. The elastic softening mechanisms of the Mg2B2O5 nanowires are discussed with reference to their twin defects, size, and surface effects.  相似文献   

18.
Mn3O4 nanowires were synthesized by calcination of a precursor obtained in a novel microemulsion. Transmission electron microscopy, X-ray diffraction, infrared spectroscopy, X-ray photoelectron spectroscopy, and selected area electron diffraction were used to characterize the structural features and chemical compositions of the as-synthesized nanowires. The results showed that the as prepared nanowires are composed of tetragonal Mn3O4, the diameters range from 50 to 800 nm, and lengths reach tens of micrometers. The nanowires are highly promising for applications in magnetic materials and sensors.  相似文献   

19.
A large quantity of bud-like silica nanowires with self-assembled long segmented stems were synthesized through thermal evaporation via using a piece of Si wafer and the mixture of Ga2O3 and carbon powder as source materials. The segmented stems were assembled from the bottom part of the bud-like silica nanowires with diameter of approximately 0.5 microm and length up to more than 20 microm. The bud-like silica nanowires could have one, two or three segmented stems. Some bud-like silica nanostrutures have a bowl-shaped cavity at their tips, others have a tail growing from their tips. The aligned silica nanowires were found extending from the thin silica shell coating the Ga ball, instead of nucleating and growing from the surface of the Ga ball directly. These interesting results could help us understand the diversity and versatility of the silica nanostructures which can be fabricated, and the knowledge of their growth mechanisms.  相似文献   

20.
(Ga,Mn)N nanowires were grown by plasma-assisted molecular beam epitaxy on p-type Si(111) substrates. Chemical composition and elemental distribution of single nanowires were analyzed by energy dispersive X-ray spectroscopy revealing an inhomogeneous Mn distribution decreasing from the surface of the nanowires toward the inner core region. The average Mn concentration within the nanowires is found to be below 1%. High-resolution transmission electron microscopy shows the presence of planar defects perpendicular to the growth direction in undoped and Mn-doped GaN nanowires. The density of planar defects dramatically increases under Mn supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号