共查询到19条相似文献,搜索用时 78 毫秒
1.
基于SVM的图像低层特征与高层语义的关联 总被引:4,自引:0,他引:4
在基于内容的图像检索中,针对图像的低层可视特征与高层语义特征之间的鸿沟,提出了一种基于支持向量机(SVM)的语义关联方法。通过对图像低层特征的分析,提取了颜色和形状特征向量(221维),将它们作为支持向量机的输入向量,对图像类进行学习,建立图像低层特征与高层语义的关联,并应用于鸟类、花卉、海洋以及建筑物等几个典型的语义类别检索。实验结果表明,该方法可适应于不同用户的图像检索,并提高了检索性能。 相似文献
2.
FSVM在图像低层特征与高层语义关联中的应用 总被引:1,自引:0,他引:1
基于内容的图像检索中,针对图像的低层可视特征与高层语义特征之间的鸿沟,提出了一种新的基于模糊支持向量机(FSVM)的语义关联方法.重点分析了支持向量机语义关联中存在的误分、拒分现象,在传统支持向量机中引入模糊隶属度函数,解决了不可分区域问题.通过对图像低层特征的分析,提取了颜色和形状特征向量(221维),将它们作为模糊支持向量机的输入向量,对图像类进行学习,建立图像低层特征与高层语义的关联.并应用于鸟类、花卉、海洋以及建筑物等几个典型的语义类别检索,实验结果表明,该方法可适应于不同用户的图像检索,在相同的条件下可以达到比支持向量机方法更为理想的语义关联效果,提高了检索性能. 相似文献
3.
一种图像底层视觉特征到高层语义的映射方法 总被引:4,自引:0,他引:4
基于语义内容的图像检索已经成为解决图像底层特征与人类高层语义之间“语义鸿沟”的关键。根据图像语义检索的思想,提出了一种采用支持向量机(Support Machine Vector)实现图像底层视觉特征到高层语义的映射方法,并在此基础上针对特例库实现了图像的语义标注和检索。实验结果表明,该映射方法能较好地表达人的语义,以提高图像的检索效率。 相似文献
4.
一种基于语义的图像数据库分类系统 总被引:3,自引:0,他引:3
实现了一种分等级的图像数据库自动语义分类系统,其中主要涉及白天、夜晚、日出/日落、室内、室外、建筑物以及风景等几个典型的语义信息。通过对图像的信息以及现有底层特征的分析,针对各级分类提取了一些判别能力好的特征。采用支持向量机(SVM)作为分类器;同时为了提高分类准确率,将支持向量机的输出改为概率形式,引入拒绝机制来拒绝一些置信度较低的样本。将Coogle检索出来的图像作为系统的测试样本取得了很好的分类结果,实验表明本系统可以对Google检索系统的结果进行一定的改进。 相似文献
5.
6.
视频语义检索的研究是目前研究的热点之一。现有的视频检索系统技术多是基于底层特征的、非语义层次的检索。与人类思维中所能理解的高层语义概念相去甚远,这严重影响视频检索的实际效果。如何跨越底层特征和高层语义的鸿沟,用高层语义概念进行视频检索是当前研究的重点。通过对视频内容的语义理解、语义分析、语义提取的简要概述,试图构造一种视频语义检索模型。 相似文献
7.
基于SVM的图像分类研究 总被引:1,自引:0,他引:1
图像分类技术有着重要的应用前景,而且对于基于内容的图像检索的发展会有积极的推动作用。多类图像分类是图像分类中的难点,对基于SVM的多类图像分类方法进行了研究,提出在二类支持向量机的基础上构造多类分类器的方法,实验结果证明和传统方法相比,分类准确率有了较大的提高。 相似文献
8.
提出一种基于改进优势集聚类的无监督学习图像检索方法,使用有记忆的SVM相关反馈将底层视觉特征和高层语义相结合,并充分发掘图像之间的相似性以得到更接近用户检索要求的结果,实验结果表明,该方法能快速收敛于用户的查询概念,在图像检索系统的准确率和反馈次数方面表现出一定的优越性. 相似文献
9.
由于基于图像高层语义信息的图像检索与传统的图像特征匹配检索相比,在检索的准确性、结果相关性以及降低误检率等方面具有明显的优势,因此高效的图像检索方法应该充分利用图像蕴涵的高层语义信息。为了利用图像的高层语义信息来进行图像检索,在深入研究图像高层语义的低层特征描述的基础上,提出了图像语义的层次划分,并对每个高层语义层提出了语义抽取和检索算法。实验结果表明,该检索算法可以有效地对图像高层语义信息进行提取,并可作为新型高效图像检索系统的一个模型。 相似文献
10.
在基于内容图像检索中,图像的底层视觉特征和高层语义概念之间存在着较大的语义间隔。使用机器学习方法学习图像特征,自动建立图像类的模型成为一种有效的方法。本文提出了一种用支持向量机(SVM)实现自然图像自动语义归类的方法,基于块划分聚类得到特征向量作为SVM训练样本,实现语义分类器。由于参与聚类的是某类图像所有块的特征,提取的特征更能反映某一类图像特征。实验证明这种方法是有效的。 相似文献
11.
语义图像检索已成为解决简单视觉特征和用户检索高级语义之间存在的"语义鸿沟"问题的关键,本文试图提出一种基于SVM和Adaboost集成学习相结合的相关反馈算法。在相关反馈过程中选择最具信息的样本训练支持向量机,可以有效减少相关反馈的次数和所需学习样本的数量,通过两者的互补来有效地提高图像检索的精度。最后提出Adaboost算法对SVM分类器进行加权投票,这样进一步提高了图像检索的性能。实验表明,该方法能较好地解决了图像检索中的小样本选择问题,并能显著提高图像检索的效率和性能。 相似文献
12.
提出了一种使用支持向量机(Support Vector Machine,SVM)的分数等级融合的虹膜识别方法。通过对虹膜纹理采用小波包分解,选择最高能量区域和次高能量区域提取特征向量,与注册入库的虹膜特征向量计算出海明距离。最后融合两个海明距离输入SVM进行识别。该方法减少输入支持向量机的维数。实验结果表明,该法提高了识别率,能够有效地应用到身份鉴别系统中。 相似文献
13.
基于内容的图像检索中SVM和Boosting方法集成应用 总被引:2,自引:2,他引:0
提出一种适用于图像内容检索的AdaBoostSVM算法。算法思想是采用支持向量机(SVM)作为AdaBoost算法的分量分类器;基于相关反馈检索机制,通过增加重要样本来模拟AdaBoost算法的权重调整方法。在包含2000幅图像的数据库中进行了检索实验,结果表明AdaBoostSVM算法能有效提高系统的检索性能。 相似文献
14.
15.
为缩小图像的低层特征与高层语义之间的语义鸿沟,基于支持向量机的相关反馈机制受到越来越广泛的关注,但这种方法并没有利用未标记样本的隐含信息.为更好地利用这些信息,提出将直推式支持向量机作为反馈过程中的学习算法.通过分析其所用特征向量的特点,设计一种颜色稀疏特征,并将其与纹理特征结合作为图像描述的特征.实验结果表明该方法较令人满意,同时也说明直推式支持向量机可在文本分类以外的领域取得较好结果. 相似文献
16.
研究一种新型相关模式识别技术——线性SVM相关滤波器的性能及其应用前景,构建一个两类物体识别模型,利用计算机合成线性SVM相关滤波器,分别考察其对抗物体平面内旋转、平面外旋转以及噪声干扰的能力,并与其它三种相关滤波器进行比较。实验结果表明,该滤波器具有最佳的抗平面内旋转能力、优秀的抗平面外旋转和抗噪声干扰能力,在真实环境下的平面内旋转图像识别和中小形变范围内三维物体识别领域具有良好的应用前景。 相似文献
17.
该文提出一种多层grams特征抽取方法来提升基于在线支持向量模型的垃圾邮件过滤器。基于在线支持向量机模型的垃圾邮件过滤器在大规模垃圾邮件数据集已取得了很好的过滤效果,但与逻辑回归模型相比,计算性能的耗时是巨大的,很难被工业界所运用。该文提出的多层grams特征抽取方法能够有效减少特征数,抽取更精准有效的特征,大幅降低模型的运行时间,同时提升过滤器的过滤效果。实验表明,该方法使得在线支持向量机模型的运行时间从10337s减少到3784s,同时模型(1-ROCA)%降低了一半。 相似文献
18.
19.
基于边缘与SVM的车牌自动定位与提取 总被引:4,自引:1,他引:4
提出了一种将边缘与SVM相结合的车牌定位与提取的方法。首先根据字符的边界特征进行粗筛选,获得几个车牌候选区;然后使用SVM分类器进行字符与非字符分类;最后根据车牌特征实现定位与提取。实验表明,该方法取得了良好的效果。 相似文献