首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-CuCo2O4 is synthesized by the low-temperature (400 °C) and cost-effective urea combustion method. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) studies establish that the compound possesses a spinel structure and nano-particle morphology (particle size (10–20 nm)). A slight amount of CuO is found as an impurity. Galvanostatic cycling of CuCo2O4 at 60 mA g−1 in the voltage range 0.005–3.0 V versus Li metal exhibits reversible cycling performance between 2 and 50 cycles with a small capacity fading of 2 mAh g−1 per cycle. Good rate capability is also found in the range 0.04–0.94C. Typical discharge and charge capacity values at the 20th cycle are 755(±10) mAh g−1 (∼6.9 mol of Li per mole of CuCo2O4) and 745(±10) mAh g−1 (∼6.8 mol of Li), respectively at a current of 60 mA g−1. The average discharge and charge potentials are ∼1.2 and ∼2.1 V, respectively. The underlying reaction mechanism is the redox reaction: Co ↔ CoO ↔ Co3O4 and Cu ↔ CuO aided by Li2O, after initial reaction with Li. The galvanostatic cycling studies are complemented by cyclic voltammetry (CV), ex situ TEM and SAED. The Li-cycling behaviour of nano-CuCo2O4 compares well with that of iso-structural nano-Co3O4 as reported in the literature.  相似文献   

2.
TiO2 hollow spheres are fabricated by a sol-gel process using carbon spheres as template. The diameter and the shell thickness of the TiO2 hollow spheres are about 400-600 nm and 60-80 nm, respectively. The electrochemical properties of the hollow spheres are investigated by galvanostatic cycling and cyclic voltammetry (CV) measurements. The initial discharge capacity reaches 291.2 mAh g−1 at a current density of 60 mA g−1. The average discharge capacity loss is about 1.72 mAh g−1 per cycle from the 2nd to the 40th cycles and the coulombic efficiency is approximately 98% after 40 cycles, indicating excellent cycling stability and reversibility.  相似文献   

3.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

4.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

5.
A nanostructured amorphous Co3Sn2 intermetallic compound was prepared by a solvothermal route. The microstructure and the electrochemical performance were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), galvanostatic cycling, and ex situ XRD. It was found that the as-prepared material is in nanoscale and is amorphous. The amorphous Co3Sn2 shows a first specific capacity of 363 mA h g−1 compared to 92 mA h g−1 for the crystalline one prepared by annealing the amorphous material. Ex situ XRD investigation shows that the amorphous Co3Sn2 undergoes a crystallization process during cycling, which leads to the capacity fade.  相似文献   

6.
Phospho-olivine LiFePO4 cathode materials were prepared by hydrothermal reaction at 150 °C. Carbon black was added to enhance the electrical conductivity of LiFePO4. LiFePO4-C powders (0, 3, 5 and 10 wt.%) were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). LiFePO4-C/solid polymer electrolyte (SPE)/Li cells were characterized electrochemically by charge/discharge experiments at a constant current density of 0.1 mA cm−2 in a range between 2.5 and 4.3 V vs. Li/Li+, cyclic voltammetry (CV) and ac impedance spectroscopy. The results showed that initial discharge capacity of LiFePO4 was 104 mAh g−1. The discharge capacity of LiFePO4-C/SPE/Li cell with 5 wt.% carbon black was 128 mAh g−1 at the first cycle and 127 mAh g−1 after 30 cycles, respectively. It was demonstrated that cycling performance of LiFePO4-C/SPE/Li cells was better than that of LiFePO4/SPE/Li cells.  相似文献   

7.
The spherical Li[Ni1/3Co1/3Mn1/3]O2 powders with appropriate porosity, small particle size and good particle size distribution were successfully prepared by a slurry spray drying method. The Li[Ni1/3Co1/3Mn1/3]O2 powders were characterized by XRD, SEM, ICP, BET, EIS and galvanostatic charge/discharge testing. The material calcined at 950 °C had the best electrochemical performance. Its initial discharge capacity was 188.9 mAh g−1 at the discharge rate of 0.2 C (32 mA g−1), and retained 91.4% of the capacity on going from 0.2 to 4 C rate. From the EIS result, it was found that the favorable electrochemical performance of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material was primarily attributed to the particular morphology formed by the spray drying process which was favorable for the charge transfer during the deintercalation and intercalation cycling.  相似文献   

8.
A potential negative electrode material (mesoporous nano-Co3O4) is synthesized via a simple thermal decomposition of precursor Co(OH)2 hexagonal nanosheets in the air. The structure and morphology of the samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the nano-Co3O4 is present in mesoporous hexagonal nanoparticles. The average size of holes is about 5-15 nm. The electrochemical performances of mesoporous nano-Co3O4 as the active starting negative electrode material for alkaline secondary battery are investigated by galvanostatic charge-discharge and cyclic voltammetry (CV) technique. The results demonstrate that the prepared mesoporous nano-Co3O4 electrode displays excellent electrochemical performance. The discharge capacity of the mesoporous nano-Co3O4 electrode can reach 436.5 mAh g−1 and retain about 351.5 mAh g−1 after 100 cycles at discharge current of 100 mA g−1. A properly electrochemical reaction mechanism of mesoporous nano-Co3O4 electrode is also constructed in detail.  相似文献   

9.
In this study a modified solid state synthesis (auto-ignition method) is used to form nanosized spinel type material LiMg0.05Ni0.45Mn1.5O4. This material presents a high voltage plateau at 4.75 V vs. Li/Li+. Structural and electrochemical characterisations have been performed using a wide range of techniques (TEM, neutron diffraction, galvanostatic measurements, and impedance spectroscopy). Besides, in situ XAS has been performed to monitor the evolution of Ni and Mn oxidation state during Li intercalation. The material presents an ordered cubic spinel structure, good capacity retention upon cycling (131 mAh g−1 at C/10 and 117 mAh g−1 at 1C) and good electronic conductivity (10−6 S cm−1 at RT). The simultaneous presence of Mn3+/Mn4+ in the structure has been investigated and explained by inclusion of disordered nanodomains in the structure.  相似文献   

10.
The layered LiNi1/3Mn1/3Co1/3O2 materials with good crystalline are synthesized by a novel method of hydrothermal method followed by a short calcination process. The crystalline structure and morphology of the synthesized materials are characterized by XRD, SEM. Their electrochemical performances are evaluated by CV, EIS and galvonostatic charge/discharge tests. The material synthesized at 850 °C for 6 h shows the highest initial discharge capacity of 187.7 mAh g−1 at 20 mA g−1. And the capacity retention of 97.9% is maintained at the end of 40 cycles at 1.0 C. CV test reveals almost no shift of anodic and cathodic peaks after first cycle, which indicates good reversible deintercalation and intercalation of Li+ ions.  相似文献   

11.
Composites of monoclinic Li3−xM′xV2−yM″2y(PO4)3 (M′ = K, M″ = Sc, Mg + Ti) with carbon were synthesized by solid-state reaction using oxalic acid or 6% H2/Ar gas mixture as reducing agents at sintering temperature of 850 °C. The samples were characterized by X-ray diffraction (XRD), voltammetry and electrochemical galvanostatic cycling. The capacity of Li3V2(PO4)3 synthesized using hydrogen as the reducing agent was 127 mA h g−1 and decreased to 120 mA h g−1 after 20 charge-discharge cycles. The substitution of lithium and vanadium for other ions did not result in the improvement of the electrochemical characteristics of the samples.  相似文献   

12.
MoO2 synthesized through reduction of MoO3 with ethanol vapor at 400 °C was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Its electrochemical performance as an anode material for lithium ion battery was tested by cyclic voltammetry (CV) and capacity measurements. During the reduction process, the starting material (MoO3) collapsed into nanoparticles (∼100 nm), on the nanoparticles remains a carbon layer from ethanol decomposition. Rate capacity and cycling performance of the as-prepared product is very satisfactory. It displays 318 mAh g−1 in the initial charge process with capacity retention of 100% after 20 cycles in the range of 0.01–3.00 V vs. lithium metal at a current density of 5.0 mA cm−2, and around 85% of the retrievable capacity is in the range of 1.00–2.00 V. This suggests the application of this type of MoO2 as anode material in lithium ion batteries.  相似文献   

13.
A well defined nano-structured material, NaV6O15 nanorods, was synthesized by a facile low temperature hydrothermal method. It can perform well as the cathode material of rechargeable sodium batteries. It was found that the NaV6O15 nanorods exhibited stable sodium-ion insertion/deinsertion reversibility and delivered 142 mAh g−1 sodium ions when worked at a current density of 0.02 A g−1. In galvanostatic cycling test, a specific discharge capacity of around 75 mAh g−1 could be obtained after 30 cycles under 0.05 A g−1 current density. Concerned to its good electrochemical performance for reversible delivery of sodium ions, it is thus expected that NaV6O15 may be used as cathode material for rechargeable sodium batteries with highly environmental friendship and low cost.  相似文献   

14.
(NH4)0.5V2O5 nanobelt is synthesized by sodium dodecyl benzene sulfonate (SDBS) assisted hydrothermal reaction as a cathode material for Li-ion battery. The as-prepared (NH4)0.5V2O5 nanobelts are 50-200 nm in diameter and several micrometers in length. The reversible lithium intercalation behavior of the nanobelts has been evaluated by cyclic voltammetry, galvanostatic discharge-charge cycling, and electrochemical impedance spectroscopy. The (NH4)0.5V2O5 delivers an initial specific discharge capacity of 225.2 mAh g−1 between 1.8 and 4.0 V at 15 mA g−1, and still maintains a high discharge capacity of 197.5 mAh g−1 after 11 cycles. It shows good rate capability with a discharge capacity of about 180 mAh g−1 remaining after 40 cycles at various rates and excellent cycling stability with the capacity retention of 81.9% after 100 cycles at 150 mA g−1. Interestingly, the excess 120 mAh g−1 capacity in the first charge process is observed, most of which could be attributed to the extraction of NH4+ group, verified by Fourier transform Infrared (FT-IR) and X-ray diffraction (XRD) results.  相似文献   

15.
Carbon-doped TiO2 nanotubes were synthesized through a sol–gel and subsequent hydrothermal process. Transmission electron microscopy and X-ray diffraction showed that the products are uniformly straight tubes with the diameter around 10 nm in anatase-type. The electrochemical performances of the nanotubes were tested by constant current discharge/charge, cyclic voltammetry, and electrochemical impedance spectroscopy. The initial discharge capacity reaches 291.7 mAh g−1 with a coulombic efficiency of 91.7% at a current density of 70 mA g−1. There is a distinct potential plateau near 1.75 and 1.89 V (versus Li+/Li) in the lithium intercalation and extraction processes, respectively, and the lithium insertion capacity is about 204 mAh g−1 over the plateau of 1.75 V region in the first cycle. From the 2nd to the 30th cycles, the average reversible capacity loss is less than 1.73 mAh g−1 per cycle. After 30 cycles, the reversible capacity still remains 211 mAh g−1 with a coulombic efficiency larger than 99.7%, implying a perfect reversibility and cycling stability.  相似文献   

16.
Nanostructured Fe3O4 nanoparticles were prepared by a simple sonication assisted co-precipitation method. Transmission electron microscopy, X-ray diffraction and BET surface area analysis confirmed the formation of ∼20 nm crystallites that constitute ∼200 nm nanoclusters. Galvanostatic charge-discharge cycling of the Fe3O4 nanoaprticles in half cell configuration with Li at 100 mA g−1 current density exhibited specific reversible capacity of 1000 mAh g−1. The cells showed stability at high current charge-discharge rates of 4000 mA g−1 and very good capacity retention up to 200 cycles. After multiple high current cycling regimes, the cell always recovered to full reversible capacity of ∼1000 mAh g−1 at 0.1 C rate.  相似文献   

17.
Lithium vanadium fluorophosphate, LiVPO4F is prepared by two-step carbothermal reduction method and characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), density and surface area. Its cathodic behaviour is examined by galvanostatic charge-discharge cycling up to 1260 cycles, cyclic voltammetry (CV) and impedance spectra using Li-metal as the counter and reference electrode. When cycled between 3.0 and 4.5 V at 15 mA g−1 (0.12C), a reversible and stable capacity of 130 (±3) mAh g−1 is observed in the range 20-200 cycles. Slow capacity fading occurs between 200 and 360 cycles. When cycled at the 0.92C rate (1C = 130 mA g−1), a reversible and stable capacity of 122 (±3) mAh g−1 is obtained at 200-800 cycles. The capacity degrades slowly over 800-1260 cycles and the total loss is ∼14%. Coulombic efficiency increases to 96-98% after the first 10-15 cycles. The CV data show that the charge-discharge process, a two-phase reaction, occurs between 4.2 and 4.5 V, in agreement with literature data. Impedance spectra, up to 90 cycles are fitted to an equivalent circuit and the variation of impedance parameters is interpreted.  相似文献   

18.
A porous spherical aggregation of Li4Mn5O12 nanorods with the particle size of 3 μm is prepared by oxidizing LiMn2O4 powder with (NH4)2S2O8 under hydrothermal conditions. The result displays that concentration of (NH4)2S2O8 plays a key role in forming the porous spherical aggregation and the optimal concentration of oxidant is found to be 1.5 mol L−1. The mechanism for the formation of the porous spherical aggregation is proposed. The electrochemical capacitance performance is tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge. The porous spherical aggregation exhibits a good electrochemical performance. It could deliver 375 F g−1 within potential range 0-1.4 V at a scan rate of 5 mV s−1 in 1 mol L−1 Li2SO4 and the value is cut down to less than 0.024 F g−1 per cycling period in 1000 cycles.  相似文献   

19.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

20.
LiFePO4/C composite cathode materials were synthesized by carbothermal reduction method using inexpensive FePO4 as raw materials and glucose as conductive additive and reducing agent. The precursor of LiFePO4/C was characterized by differential thermal analysis and thermogravimetry. The microstructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and particle size analysis. Cyclic voltammetry (CV) and charge/discharge cycling performance were used to characterize their electrochemical properties. The results showed that the LiFePO4/C composite synthesized at 650 °C for 9 h exhibited the most homogeneous particle size distribution. Residual carbon during processing was coated on LiFePO4, resulting in the enhancement of the material's electronic properties. Electrochemical measurements showed that the discharge capacity first increased and then decreased with the increase of synthesis temperature. The optimal sample synthesized at 650 °C for 9 h exhibited a highest initial discharge capacity of 151.2 mA h g−1 at 0.2 C rate and 144.1 mA h g−1 at 1 C rate with satisfactory capacity retention rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号