首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heated aluminum oxide particles (HAOPs) are a newly synthesized adsorbent with attractive properties for use in hybrid adsorption/membrane filtration systems. This study compared removal of natural organic matter (NOM) from water by adsorption onto HAOPs with that by adsorption onto powdered activated carbon (PAC) or coagulation with alum or ferric chloride (FeCl3); explored the overlap between the NOM molecules that preferentially adsorb to HAOPs and those that are removed by the more conventional approaches; and evaluated NOM removal and fouling in hybrid adsorbent/membrane systems. For equivalent molar doses of the trivalent metals, HAOPs remove more NOM, and NOM with higher SUVA254, than alum or FeCl3. Most of the HAOPs-nonadsorbable fraction of the NOM can be adsorbed by PAC; in fact, that fraction appears to be preferentially adsorbed compared to the average NOM in untreated water. Predeposition of the adsorbents on a microfiltration membrane improves system performance. For the water tested, at a flux of 100 L/m2-hr, predeposition of 11 mg/L PAC and 5 mg/L HAOPs (as Al3+) allowed the system to operate 5 times as long before the transmembrane pressure increased by 1 psi and to remove 10-20 times as much NOM as when no adsorbents were added.  相似文献   

2.
Although the importance of natural organic matter (NOM) in the environment and in drinking water treatment is well-known, its structure is still ill-defined. The fragmentation patterns of NOM treated by irradiation (various wavelengths--185-400 nm), hydroxyl radicals, chlorine, ozone, and breakdown by a white rot fungus were studied to investigate the structure of chromophoric NOM molecules. Size exclusion chromatography was used to monitor the size distributions of NOM in two natural water waters and two NOM isolates. Three distinct fragmentation patterns were observed: ozone attack appeared to be nonsize specific, UV (> or = 254 nm) irradiation preferentially removed higher molecular weight chromophores, while processes involving hydroxyl radical showed intermediate size specificity. For the samples studied, the UV (> or = 254 nm) irradiation-induced fragmentation of NOM followed the patterns suggested by a simple trimer depolymerization model, supporting the viewpoint that NOM has repeating structural units joined by photolabile chemical bonds. The largest molecules reacted most rapidly, progressively fragmenting into slower reacting smaller molecules, which initially accumulated before breaking down to become nonchromophoric. This dependency of rate on molecular size appears to follow from the law of photochemistry which states the rate of reaction is proportional to the rate of light absorption: larger chromophores had higher molar absorptivities, absorbed more photons, and hence reacted faster than smaller chromophores.  相似文献   

3.
Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.  相似文献   

4.
The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10(-7.4) to 10(-3.7) M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 10(21.8 +/- 0.1) and 10(22.0 +/- 0.1) M-1), but less than those determined for the DOM strong sites (Kdom,s = 10(22.8 +/- 0.1) and 10(23.2 +/- 0.1) M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 10(11.5 +/- 0.1) and 10(11.8 +/- 0.1) M-1) and weak DOM sites (Kdom,w = 10(8.7 +/- 3.0) and 10(7.3 +/- 4.5) M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.  相似文献   

5.
6.
According to a recent conceptual model for hydration-assisted sorption of organic compounds in natural organic matter (NOM), certain polar moieties of dry NOM are unavailable for compound sorption due to strong intra- and intermolecular NOM interactions. Water molecules solvate these moieties creating new sorption sites at solvated contacts. It is expected that the greater a compound's ability to undergo specific interactions with NOM, the greater will be the hydration-assisted sorption effect, because penetration of compounds into solvated contacts must involve competition with water at the solvated contact. To test this model, we compare the hydration effect on sorption kinetics and equilibrium for 4 compounds with differing abilities to undergo specific interactions with NOM. Sorption measured on Pahokee peat in aqueous systems was fast compared with n-hexadecane (dry) systems. No concentration effect on attainment of sorption equilibrium was observed. m-Nitrophenol exhibited the greatest hydration-assisted sorption effect, benzyl alcohol showed an intermediate effect and acetophenone and nitrobenzene showed no hydration-assisted sorption, on an activity scale. The extent of hydration-assisted sorption effect correlates with compound ability to undergo specific interactions. These results support the conceptual model and demonstrate the importance of polar NOM noncovalent links in organizing the NOM phase and in controlling the hydration effect on sorption of organic compounds.  相似文献   

7.
The inhibition of calcite precipitation by natural organic material (NOM) in solutions seeded with calcite was investigated using a pH-stat system. Experiments were carried out using three NOMs with different physical/chemical properties. For each of the materials, inhibition was found to be more effective at lower carbonate/calcium ratios and lower pH values. The reduction in the precipitation rate could be explained by a Langmuir adsorption model using a conditional equilibrium constant. By identification of the type of site on the NOM molecules that is involved in the adsorption reaction, the "conditional" equilibrium constants obtained at different solution compositions converged to a single "nonconditional" value. The thermodynamic data determined at 25 degrees C and 1 atm suggest that the interaction between NOM molecules and the calcite surface is chemisorptive in nature and that adsorption is an endothermic reaction driven by the entropy change. The greatest degree of inhibition was observed for the NOM with the highest molecular weight and aromatic carbon content. For a given type of NOM, the degree of inhibition of calcite precipitation was dictated bythe balance between the enthalpy change and the entropy change of the adsorption reaction.  相似文献   

8.
The principal objective of this study was to elucidate mechanisms by which NOM affects the adsorption of a nonpolar (simazine) and a polar (asulam) herbicide on activated carbon. Experiments were carried out in microcolumns that were continuously fed solutions containing NOM with different molecular weight (MW) distributions and intermittently solutions containing the same NOM plus simazine or asulam. The MW distributions of a groundwater NOM were altered by coagulation and ultrafiltration, which resulted in the preferential removal of high-MW, UV260-absorbing NOM. At a given NOM loading, the simazine removal efficiency was higher in the column that was preloaded with raw groundwater than in columns receiving coagulated or ultrafiltered water. In contrast, the asulam removal efficiency was similar for all three NOM solutions at a given NOM loading. Therefore, the results suggested that low-MW, UV260-absorbing NOM molecules competed directly with strongly adsorbing pesticides, such as simazine, for adsorption sites. For more weakly adsorbing pesticides, such as asulam, direct competition for adsorption sites originated not only from the strongly adsorbing, low-MW NOM, but also from more weakly adsorbing, higher-MW NOM. Consequently, the competing NOM fraction increases as the adsorbability of the SOC decreases, a result that was confirmed by adsorption data for additional pesticides of similar size. However, a smaller pesticide competed more effectively for adsorption sites than a larger pesticide of similar polarity, suggesting that the concentration of competing NOM decreases as the MW of the SOC decreases.  相似文献   

9.
10.
11.
Experiments with immobilized lead dioxide showed that this solid was reduced by natural organic matter (NOM) isolated from Potomac River water. Kinetically, the process was slow and occurred throughout many weeks of exposure. The amount of mobilized lead was affected by the concentration of NOM and exposure time but not significantly influenced by the type of NOM used in the experiments. The interactions of NOM with PbO2 were quantified using differential absorbance spectroscopy. It showed that the oxidation of chromophoric groups in NOM was strongly correlated with lead release. Because lead release yields were higher thatthose predicted based on the depletion of the aromatic groups, it is hypothesized that NOM moieties otherthan aromatic functionalities are engaged in the reduction of PbO2 by NOM and/or lead mobilization involves the formation of mixed Pb(II)/Pb(IV) soluble and colloidal species.  相似文献   

12.
While many studies have examined Hg(II) binding ligand in natural dissolved organic matter, determined ligand concentrations far exceed natural Hg(II) concentrations. This ligand class may not influence natural Hg(II) complexation, given the reverse relation between ligand concentration and metal-ligand binding strength. This study used a new competing ligand, thiosalicylic acid, in a competitive ligand exchange method in which water-toluene extraction was used to determine extremely strong Hg(II) binding sites in estuarine and coastal waters (dissolved [Hg] = 0.5-8 pM). Thiosalicylic acid competition lowered the detection limit of Hg(II) complexing ligand by 2 orders of magnitude from values found by previous studies; the determined Hg(II) complexing ligand ranged from 13 to 103 pM. The logarithmic conditional stability constants between Hg(II) and Hg(II) complexing ligand (Kcond' = [HgL]/([Hg2+][L']), [L'] = total [L] - [HgL]) ranged from 26.5 to 29.0. Applying the same method for chloride competition detected another class of ligand that is present from 0.5 to 9.6 nM with log conditional stability constants ranging from 23.1 to 24.4. A linear relationship was observed between the log conditional stability constant and log Hg(II) complexing ligand concentration, supporting the hypothesis that Hg(II) binding ligand should be characterized as a series or continuum of binding sites on natural dissolved organic matter. Calculating Hg(II) complexation using the conditional stability constants and ligand concentrations determined in this study indicates that >99% of the dissolved mercury is complexed by natural ligand associated with dissolved organic matter in estuarine and coastal waters of Galveston Bay, Texas.  相似文献   

13.
Municipal wastewater effluent contains ligands that form Hg(II) complexes that are inert in the presence of glutathione (GSH) during competitive ligand exchange experiments. In this study, the strong ligands in wastewater effluent were further characterized by comparing their behavior with sulfide-containing ligands in model solutions and by measuring their concentration after exposing them to oxidants. The strong Hg(II) complexes in wastewater effluent and the complexes formed when Hg(II) was added to S(-II) were retained during C18 solid-phase extraction (SPE) and did not dissociate in the presence of up to 100 microM GSH. In contrast, Hg(II) complexes with dissolved humic acid were hydrophilic and dissociated in the presence of GSH. The combination of sulfide and humic acid resulted in formation of Hg(II) complexes that were inert to GSH and were only partially retained by C18-SPE, indicating that NOM interacted with the Hg-sulfide complexes. When wastewater effluent samples and model solutions of free sulfide, Zn-sulfide, and Fe-sulfide were exposed to 0.14 mM NaOCl for 1 h (to mimic conditions encountered during chlorine disinfection), the strong Hg(II)-complexing ligands were completely removed. Exposure of the wastewater effluent and the model ligands to oxygen for 2 weeks resulted in approximately 60% to 75% loss of strong ligands. The strong ligands that remained in the oxygen-oxidized samples were resistant to further oxidation by chlorine, indicating that oxidation of S(-II) results in the formation of other sulfur-containing ligands such as S8 that form strong complexes with Hg(II).  相似文献   

14.
The speciation or physicochemical form of copper and zinc in freshwater plays an important role in reactivity, bioavailability, and toxicity. Strong metal-binding ligands, which determine speciation, were detected by voltammetric methods, both anodic stripping voltammetry (ASV) and competitive ligand equilibration adsorptive stripping voltammetry (CLE-AdSV); the latter technique can detect nanomolar levels of extremely strong (log K' > 13) ligands. Through careful field site selection and the investigation of ultrafiltration permeate samples, natural organic ligands were measured with limited interferences of colloidal inorganic iron- and aluminum-based trace metal-binding phases. Furthermore, ultrafiltration allowed measurement of colloidal and dissolved ligands independently, and differences of ligand abundance and strength in different size classes are reported. For copper, ultrafilterable (<3 kDa) organic ligand site concentrations (expressed normalized to dissolved organic carbon) were on average 33% of the colloidal level, but ultrafilterable ligand log K' values were 0.5 log units stronger than those of the 0.4 microm filterable concentration. The ultrafilterable copper-binding ligand concentration showed a smaller variation across the rivers (25% rsd) than zinc-binding ligands (90% rsd). For all field sites and size fractions, strong ligand sites greatly exceeded metal concentrations; subsequently, equilibrium speciation modeling predict picomolar levels of free metal. Modeling also indicated that the very strong ligands (detected by CLE-AdSV) predominate, so modeling based solely on ASV data in freshwater may be inadequate. Competition experiments indicated that the very strong ligand sites are metal specific for copper and zinc.  相似文献   

15.
In this study, cyclic voltammetry was used to characterize the redox properties of natural organic matter (NOM). Using a stationary platinum working electrode, minimal concentrations of electrolyte, and dimethyl sulfoxide (DMSO) as the solvent, we were able to resolve two pairs of oxidation and reduction peaks for a fraction of Georgetown NOM that is enriched in polyphenolic moieties (NOM-PP). Applying our method to other fractions of Georgetown NOM, and to samples of NOM from a wide range of other sources, gave cyclic voltammograms (CVs) that generally contained fewer distinguishing features than those obtained with NOM-PP. For comparison, CVs were also obtained using our method on six quinone model compounds: anthraquinone-2,6-disulfonate (AQDS), lawsone, juglone, menadione, menaquinone-4, and ubiquinone-5. The CVs of these quinones were similar in shape to the CV of NOM-PP, consistent with the notion that quinones are the dominant redox-active moieties associated with NOM. Quantitative analysis of the peaks in these CVs showed that the peak potentials (Ep) were separated by more than 0.059 V and that the peak currents (i(p)) were linearly related to the square root of the scan rate (v0.5) and concentration (C) for both NOM-PP and the model quinones. Equivalent results were obtained with a rotating Pt disk electrode. From this we conclude that NOM-PP and the model quinones undergo similar sequences of two one-electron, quasi-reversible, diffusion controlled, electron transfers at the Pt electrode surface in DMSO. Although it is difficult to relate these results to Nernstian standard potentials vs the standard hydrogen electrode (SHE) under aqueous conditions, it is clear that the apparent formal potential for NOM-PP lies between the corresponding potentials for menadione and juglone and well above that of AQDS. Attempts to derive correlations between Ep and i(p) for the NOMs with quantifiable electrode response and other measurable properties of NOM (including trace metal content and UV-vis absorbance) did not yield any strong relationships.  相似文献   

16.
Trace metal toxicity to aquatic biota is highly dependent on the meta?s chemical speciation. Accordingly, metal speciation is being incorporated in to water quality criteria and toxicity regulations using the Biotic Ligand Model (BLM) but there are currently no BLM for biota in marine and estuarine waters. In this study, I compare copper speciation measurements in a typical coastal water made using Competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) to model calculations using Visual MINTEQ. Both Visual MINTEQ and BLM use similar programs to model copper interactions with dissolved organic matter-DOM (i.e., the Stockholm Humic Model and WHAM-Windermere Humic Aqueous Model, respectively). The total dissolved (<0.4 μm filter) copper concentration, [CuT] in the study sites ranged from <10 nM close to the open Baltic Sea to ca. 50 nM in the vicinity of a marina in the Stockholm Archipelago. The corresponding free copper concentration [Cu2+], measured by CLE-ACSV ranged from 10–13.2 M to 10–12.0 M for the reference and marina sites, respectively, whereas the corresponding [Cu2+] modeled calculations ranged from 10–12.5 M to 10–11.6 M. The low copper to DOM ratios (similar to 0.0004 mg Cu per mg DOC) in these coastal waters ensured that ambient dissolved copper was overwhelmingly chelated to strong Cu–binding ligands (12 < log KCuL1,Cu2+Cond >14). The modeled [Cu2+] could be fitted to the experimental values better after the conditional stability constant for copper binding to fulvic acid (FA) complexes in DOM in the SHM was adjusted to account for higher concentration of strong Cu-binding sites in FA.  相似文献   

17.
The microscopic structure of carbonaceous surfaces exposed to natural organic matter (NOM) under aqueous conditions has been explored using atomic force microscopy (AFM). Dismal Swamp Water was used as the NOM source, while highly ordered pyrolytic graphite (HOPG) served as a surrogate for the graphene sheets that characterize the surface of many carbonaceous materials in aquatic environments. Under acidic conditions, the HOPG surface was covered with a densely packed monolayer of NOM molecules. In some cases, aggregates of well-defined, individual NOM molecules were observed that exhibited a degree of registry with respect to the HOPG substrate. This suggests that adsorbate-substrate interactions play a role in moderating the structure of the adsorbate layer. As the pH increased, the concentration of adsorbed NOM decreased systematically because of increasingly repulsive interactions between adsorbates. Increasing the ionic strength produced a modest increase in the concentration of adsorbed NOM. Ca2+ ions exerted a more pronounced influence on both the surface coverage of adsorbed NOM molecules and the size of individual adsorbates because of the effects of intermolecular complexation. In contrast to the spherical structures observed by AFM under aqueous conditions, adsorbed NOM formed a mixture of "ringlike" assemblies and larger aggregates upon drying.  相似文献   

18.
Interactions of a wide set of organic compounds with model natural organic matter (NOM, Pahokee peat) were examined using a new approach that converts aqueous sorption to compound transfer from n-hexadecane to the hydrated NOM. This conversion accounts for solute-water interactions and applies the same inert reference medium for all compounds of interest, making it possible to classify sorbates according to the strength of sorbate-NOM interactions. Differences in strength of organic compound interactions in the sorbed phase as great as 4-5 orders of magnitude are demonstrated. The strongest interactions were observed for compounds with well-established H-bonding potentials. Considering hydrocarbons and Cl-substituted hydrocarbons, aliphatic compounds gain more upon distribution from the n-hexadecane medium to NOM than do aromatic compounds. Sorption nonlinearity was tested by comparing the change in n-hexadecane-hydrated NOM distribution coefficient (K(d,i)) versus sorbed concentration for the different compounds. Only those compounds that interact most strongly with NOM demonstrated significant sorption nonlinearity, expressed by a strong reduction in K(d,i) as a function of sorbed concentration. The relationship between compound ability to interact with NOM and reduction in K(d,i) as a function of sorbed concentration can be used to characterize compound distribution among different sorption domains.  相似文献   

19.
Natural organic matter (NOM) enhancement of the biological reduction of hematite (alpha-Fe2O3) by the dissimilatory iron-reducing bacterium Shewanella putrefaciens strain CN32 was investigated under nongrowth conditions designed to minimize precipitation of biogenic Fe(II). Hydrogen served as the electron donor. Anthraquinone-2,6-disulfonate (AQDS), methyl viologen, and methylene blue [quinones with an Ew0 (pH 7) of 0.011 V or less], ferrozine [a strong Fe(II) complexing agent], and characterized aquatic NOM (Georgetown NOM or Suwannee River fulvic acid) enhanced bioreduction in 5-day experiments whereas 1,4-benzoquinone (Ew0 value = 0.280 V) did not. A linear relationship existed between total Fe(II) produced and concentrations of ferrozine or NOM but not quinones, except in the case of methylene blue. Such a linear relationship between Fe(II) and methylene blue concentrations could be due to the systems being far undersaturated with respect to methylene blue or the loss of the thermodynamic driving force. A constant concentration of AQDS and variable concentrations of ferrozine produced a linear relationship between total Fe(II) produced and the concentration of ferrozine. Enhancement effects of both AQDS and ferrozine were additive. NOM may serve as both an electron shuttle and an Fe(II) complexant; however, the concentration dependence of hematite reduction with NOM was more similar to ferrozine than quinones. NOM likely enhances hematite reduction initially by electron shuttling and then further by Fe(II) complexation, which prevents Fe(II) sorption to hematite and cell surfaces.  相似文献   

20.
By using high-performance size exclusion chromatography (HPSEC) and reversed-phase high-performance liquid chromatography with on-line three-dimensional excitation emission matrix fluorescence detection, we measured fluorescence properties of natural organic matter (NOM) as a function of molecular size (MS) and polarity. The work was carried out with Suwannee River Fulvic Acid, Aldrich Humic Acid, and a naturally occurring river NOM sample. Significant differences in fluorescence maximum pattern were found as NOM was separated chromatographically based on MS and polarity. There existed a strong relationship between MS, fluorescence pattern, and polarity. Humic-, fulvic-, and protein-like fluorescence fractions had distinct hydrophilic/hydrophobic nature. The results suggest that HPSEC may be better for characterizing major fulvic-like fluorescence and smaller MS fractions but not those having humic- and protein-like fluorescence and larger MS, which may be strongly adsorbed onto the HPSEC column because of their hydrophobic nature. This study has significant implications for further understanding the nature of NOM and its complexation with trace metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号