首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用自主设计的熔体离心纺丝设备研究了聚己二酸/对苯二甲酸丁二醇酯(PBAT)的可纺性,并分析纺丝参数对PBAT纤维形貌和性能的影响。结果表明:挤出机温度为220℃、喷丝器温度为200℃、电机转速为4000 r/min、收集距离为18 cm时纤维形貌最佳;纺丝温度的提高可有效避免纤维卷曲以及纤维细化;随着纺丝温度的增加,聚合物熔体黏度下降,流动性变好,制备的纤维分布更加均匀,纤维结晶度得到提高,纤维膜的力学性能得到明显改善,其最大应力提高至15.3 MPa,最大应变为80%。  相似文献   

2.
综述了电纺制备纳米纤维的基本原理和最新发展,简要回顾了纳米纤维静电纺丝的发展历史,详细阐述了纳米纤维静电纺丝制备方法的最新进展。对文献报道的越来越多聚合物采用静电纺丝法制备纳米纤维,在静电纺丝中要想得到优良的纳米纤维,过程参数十分重要。此外,对各国研究者最近发展的几种新型的静电纺丝装置也进行了讨论。  相似文献   

3.
正(上接2016年第1期第33页)3射流成形机理有喷嘴离心纺、无喷嘴离心纺、离心-静电纺有着各自的特点,下文将重点介绍这三种离心纺射流的成形条件、轨迹特征和影响因素。其中,有喷嘴和无喷嘴离心纺的射流成形机理将基于本课题组的研究成果展开论述,而离心-静电纺的射流成形机理将基于台湾成功大学Chen Chuh-yung课题组近4年来  相似文献   

4.
激光熔体静电纺丝法是一种新型的制备微纳米纤维的技术。利用激光熔体静电纺丝法制备了聚对苯二甲酸乙二醇酯(PET)微纳米纤维,研究了应用电压、激光电流及接收距离对纤维直径的影响,并利用扫描电镜(SEM)对纤维的微观形貌进行了表征。利用TG-DTA和X射线衍射仪(XRD)对纤维的热稳定性和结晶性进行了表征,同时采用单轴拉力机...  相似文献   

5.
以聚乙烯吡咯烷酮(PVP)为络合剂,与醋酸锌(Zn(CH3COO)2)和乙酸钴(Co(CH3COO)2)反应制得前驱体溶液.采用静电纺丝法制备了PVP/Zn(CH3COO)2/Co(CH3COO)2复合微/纳米纤维,经过高温煅烧得到Co掺杂ZnO微/纳米纤维.采用热重分析(TG)、X射线衍射(XRD)、扫描电镜(SEM)等手段对其进行了表征.以甲基橙模拟有机污染物,考察紫外光照射下所得Co掺杂ZnO微/纳米纤维的降解效果.实验结果表明,所制备的Co掺杂ZnO微纳米纤维对甲基橙溶液具有良好的光催化性能,在光照80min后降解率可达93%.  相似文献   

6.
离心纺丝是一种具有工业化前景的微纳米纤维制备方法,具备产出率高、无污染等特点.介绍近年来离心纺丝辅助设备、成纱设备、新型离心纺丝设备的发展情况,以及离心纺丝产品在医疗卫生、环境保护和电化学等领域的应用,指出未来的研究方向.  相似文献   

7.
利用静电纺丝技术制备的聚合物/无机物复合纳米纤维可以综合聚合物、无机物和纳米纤维三者的优点,表现出许多特殊的优异性能。介绍了国内外应用静电纺丝技术制备具有优良光学、电学、热学和力学性能的聚合物/无机物复合纳米纤维所取得的最新研究进展,指出了今后的研究热点及主要发展方向。  相似文献   

8.
静电纺丝是目前制备纳米级纤维的一种新技术,已成为纳米技术研究领域的一个新热点.简述了静电纺丝技术制备纳米纤维的基本原理,阐述了各国研究者近年来按不同喷头类型和接收形式设计的静电纺丝装置.随着纳米技术的不断发展,静电纺纳米纤维应用越趋广泛,重点介绍了目前静电纺纤维在生物和医学、过滤、纺织品、传感器、自清洁和催化载体、能源与光磁等领域的应用状况.  相似文献   

9.
李妮  熊杰  薛花 《纺织学报》2010,31(12):13-18
以聚乙烯醇为原料进行静电纺丝,观察静电纺过程中射流形态和纳米纤维在接收装置上的沉积形态,并采用扫描电镜观察纳米纤维的形态。分析了溶液质量分数及其导电性和施加电压这3个参数对射流运动所形成的锥形包络轨迹的顶角、纳米纤维在接受装置上的沉积面积和纳米纤维直径的影响。研究发现:锥形包络轨迹的顶角和纳米纤维的沉积面积随着这3个参数增加而减少;纤维直径随着溶液质量分数的增加而增加,随着溶液导电性的增加而减少,随着施加电压的增加先增加再减少。  相似文献   

10.
采用离心纺丝及预氧化碳化技术制备纳米聚丙烯腈基碳纤维,通过正交实验,对离心纺丝制备纳米聚丙烯腈纤维的4个工艺参数(溶液浓度、转速、针头直径和接收距离)进行优化组合,探究最佳的组合工艺;并对聚丙烯腈纤维预氧化工艺中的温度和时间进行组合优化。结果表明:在离心纺丝工艺中,浓度是对纤维直径影响最大的工艺参数,而转速则是对纤维均匀度影响最大的参数;预氧化处理的温度应在250℃以上,以280℃为宜,且适宜的预氧化时间为2h。  相似文献   

11.
文章综述了采用静电纺丝法制备取向纳米纤维的研究进展,介绍了通过改变静电纺丝的装置,制备有序排列的纳米纤维的几种方式。  相似文献   

12.
静电纺丝工艺参数对制备聚丙烯腈纳米纤维的影响   总被引:1,自引:0,他引:1  
用静电纺丝方法纺制聚丙烯腈(PAN)纳米纤维毡,通过扫描电镜来观察纤维的直径及其形态,研究了纺丝液浓度、溶液挤出量、静电电压、接收距离等参数对纤维直径及形态的影响,实验表明纺丝液浓度、静电电压、接收距离等对纺丝效果有明显影响,溶液挤出量对纺丝效果无明显影响。  相似文献   

13.
文章比较了各种制备纳米纤维的方法,并就如何采用静电纺丝技术制备纳米纤维进行了探讨。  相似文献   

14.
用静电纺丝的方法制得聚丙烯腈纳米纤维,并在250℃下预氧化,850℃下炭化,得到碳纳米纤维.用扫描电镜观察了静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维表面形态结构的变化,采用X射线衍射和红外光谱法分析了原料聚丙烯腈粉末、静电纺纳米纤维、预氧化后的纳米纤维和炭化后的纳米纤维内部结构的变化.  相似文献   

15.
针对静电纺丝纳米纤维宏量制备过程中的技术问题,系统介绍了近年来国内外提高静电纺产量的最新进展、关键方法与核心技术。围绕多针头和无针头 2 大类宏量制备技术,具体介绍了多种宏量制备方法的原理、结构和特点,从产业应用和学术研究的角度分别对其进行比较,深入分析涉及到的多种宏量制备技术和装置的优缺点,以期推动静电纺丝法制备纳米纤维的产业化和多功能纳米纤维的深入研究。分析表明,无针头类静电纺丝具有电场均匀、产量高等优点,将是静电纺纳米纤维宏量制备技术发展的主要方向,但无针头类静电纺丝的机制、模拟和产业化应用仍需深入研究。  相似文献   

16.
随着科学技术的不断发展,纳米技术在纤维制造领域得到了广泛的应用,兼具不同功能性的纳米纤维应运而生,并因其诸多的优越性能在很多研究领域得到推广。本文通过研究静电纺纳米纤维的制备方法及性能分析,为进一步促进复合纳米材料的发展,并为其应用提供一定的理论依据。  相似文献   

17.
通过调节溶液质量分数、质量比、纺丝电压、供液速度、接收距离和辊筒转速等工艺参数,探讨不同条件对静电纺聚乙烯醇(PVA)/海藻酸钠(SA)复合纳米纤维膜的影响,制备纤维形貌优良的复合纳米纤维膜。使用场发射扫描电镜(FE-SEM)观察复合纳米纤维膜的形貌,并分析纤维直径及其分布。结果表明:最优工艺参数为聚乙烯醇质量分数10%、海藻酸钠质量分数2%、质量比8∶2、纺丝电压19 kV、供液速度1.6 mL/h、接收距离19 cm、辊筒转速300 r/min。此时,可得到形貌良好、分布均匀,平均直径为120.8 nm的复合纳米纤维。  相似文献   

18.
静电纺丝法制备木质素基纳米纤维   总被引:1,自引:0,他引:1  
以N,N-二甲基甲酰胺为溶剂,对不同比例的乙酸木质素(AAL)与聚乙烯吡咯烷酮(PVP)混合溶液,AAL与聚丙烯酸酯(polyacrylate)混合溶液,AAL与聚乙烯醇(PVA)混合溶液三种溶液体系进行静电纺丝。用扫描电子显微镜观察了纳米纤维的表面形貌。结果表明:AAL与PVA混合溶液通过电纺不能得到纳米纤维。通过电纺可以得到直径均匀、表面光滑的AAL与PVP混合纳米纤维,AAL与聚丙烯酸酯混合纳米纤维,并且AAL含量的增加对混合纳米纤维的直径和表面形貌没有明显的影响。进而对单一AAL的静电纺丝进行了研究,分别研究了THF,DMF,乙酸等不同的溶剂体系,发现只有以乙酸为溶剂才能电纺成纤。  相似文献   

19.
利用NaBH4作为还原剂,表没食子儿茶素没食子酸酯(EGCG)为稳定剂,还原RhCl3水溶液制备铑纳米颗粒,并用透射电镜(TEM)研究了铑纳米颗粒的形貌.通过静电纺丝技术制备了PEI/PVA纳米纤维,并用戊二醛作为交联剂使之交联以提高其耐水性.然后在交联过的PEI/PVA纤维膜上负载铑纳米颗粒;利用傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)对PEI/PVA以及Rh/PEI/PVA薄膜进行了表征.结果表明:利用静电纺丝技术和复合技术可以制备PEI/PVA超细纤维负载纳米铑的杂化材料.  相似文献   

20.
本文以聚苯乙烯/二氯甲烷体系为纺丝液,使用普通市售喷笔,采用液喷纺丝法制备了聚苯乙烯微纳米纤维膜,探究了不同溶液质量分数、气流风压和纺丝距离对纤维直径及其孔隙率的影响。结果显示,所得微纳米纤维膜直径在200~1 600 nm内,纤维直径随溶液质量分数和纺丝距离的增大而增大,随风压的增大而减小。通过正交实验研究发现,不同条件对纤维直径和孔隙率的显著影响顺序为:溶液质量分数风压纺丝距离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号