首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of OH scavengers on how water vapor influences the formation of secondary organic aerosol (SOA) in ozonolysis of limonene, Delta3-carene, and alpha-pinene at low concentrations has been investigated by using a laminar flow reactor. Cyclohexane and 2-butanol (3-40 x 10(13) molecules cm(-3)) were used as scavengers and compared to experiments without any scavenger. The reactions were conducted at 298 K and at relative humidities between <10 and 80%. The yield of SOA decreased in the order "no scavenger" > 2-butanol > cyclohexane. The effect of water vapor was similar for 2-butanol and without a scavenger, with an increase in particle number and mass concentration with increasing relative humidity. The water effect for cyclohexane was more complex, depending on the terpene, scavenger concentration, and SOA concentration. The water effect seems to be influenced by the HO2/RO2 ratio. The results are discussed in relation to the currently suggested mechanism for alkene ozonolysis and to atmospheric importance. The results imply that the ozone-initiated oxidation of terpenes needs revision in order to fully account for the role of water in the chemical mechanism.  相似文献   

2.
We present a method for measuring secondary organic aerosol (SOA) production at low total organic mass concentration (COA) using proton-transfer reaction mass spectrometry (PTR-MS). PTR-MS provides high time resolution measurements of gas-phase organic species and, coupled with particle measurements, allows for the determination of aerosol yield in real time. This approach facilitates the measurement of aerosol production at low COA; in fact aerosol mass fractions can be measured during alpha-pinene consumption as opposed to only at the completion of gas-phase chemistry. The high time resolution data are consistent with both the partitioning theory of Pankow (Atmos. Environ. 1994, 28,185 and 189) and the previous experimental measurements. Experiments including the effect of UV illumination and NOx reveal additional features of alpha-pinene + ozone product photochemistry and volatility. The high time resolution data also elucidate aerosol production from alpha-pinene ozonolysis at COA < 10 microg m(-3) and show that extrapolations of current partitioning models to conditions of low COA significantly underestimate SOA production under dark, low-NOx conditions. However, extrapolations of current models overestimate SOA production under illuminated, higher-NOx conditions typical of polluted regional air masses.  相似文献   

3.
Effect of acidity on secondary organic aerosol formation from isoprene   总被引:1,自引:0,他引:1  
The effect of particle-phase acidity on secondary organic aerosol (SOA) formation from isoprene is investigated in a laboratory chamber study, in which the acidity of the inorganic seed aerosol was controlled systematically. The observed enhancement in SOA mass concentration is closely correlated to increasing aerosol acidity (R2 = 0.979). Direct chemical evidence for acid-catalyzed particle-phase reactions was obtained from the SOA chemical analyses. Aerosol mass concentrations for the 2-methyltetrols, as well as the newly identified sulfate esters, both of which serve as tracers for isoprene SOA in ambient aerosols, increased significantly with enhanced aerosol acidity. Aerosol acidities, as measured in nmol of H+ m(-3), employed in the present study are in the same range as those observed in tropospheric aerosol collected from the eastern U.S.  相似文献   

4.
The secondary organic aerosol (SOA) yields from the laboratory chamber ozonolysis of a series of cycloalkenes and related compounds are reported. The aim of this work is to investigate the effect of the structure of the hydrocarbon parent molecule on SOA formation for a homologous set of compounds. Aspects of the compound structures that are varied include the number of carbon atoms present in the cycloalkene ring (C5 to C8), the presence and location of methyl groups, and the presence of an exocyclic or endocyclic double bond. The specific compounds considered here are cyclopentene, cyclohexene, cycloheptene, cyclooctene, 1-methyl-1-cyclopentene, 1-methyl-1-cyclohexene, 1-methyl-1-cycloheptene, 3-methyl-1-cyclohexene, and methylenecyclohexane. The SOA yield is found to be a function of the number of carbons present in the cycloalkene ring, with an increasing number resulting in increased yield. The yield is enhanced by the presence of a methyl group located at a double-bonded site but reduced by the presence of a methyl group at a non-double-bonded site. The presence of an exocyclic double bond also leads to a reduced yield relative to that of the equivalent methylated cycloalkene. On the basis of these observations, the SOA yield for terpinolene relative to the other cyclic alkenes is qualitatively predicted, and this prediction compares well to measurements of the SOA yield from the ozonolysis of terpinolene. This work shows that relative SOA yields from ozonolysis of cyclic alkenes can be qualitatively predicted from properties of the parent hydrocarbons.  相似文献   

5.
Detailed organic analysis of fine (PM2.5) rural aerosol collected during summer at K-puszta, Hungary from a mixed deciduous/coniferous forest site shows the presence of polar oxygenated compounds that are also formed in laboratory irradiated alpha-pinene/NOx/air mixtures. In the present work, two major photooxidation products of alpha-pinene were characterized as the hydroxydicarboxylic acids, 3-hydroxyglutaric acid, and 2-hydroxy-4-isopropyladipic acid, based on chemical, chromatographic, and mass spectral data. Different types of volatile derivatives, including trimethylsilyl ester/ether, methyl ester trimethylsilyl ether, and ethyl ester trimethylsilyl ether derivatives were measured by gas chromatography/mass spectrometry (GC/MS), and their electron ionization (El) spectra were interpreted in detail. The proposed structures of the hydroxydicarboxylic acids were confirmed or supported with reference compounds. 2-Hydroxy-4-isopropyladipic acid formally corresponds to a further reaction product of pinic acid involving addition of a molecule of water and opening of the dimethylcyclobutane ring; this proposal is supported by a laboratory irradiation experiment with alpha-pinene/NOJ0 air. In addition, we report the presence of a structurally related minor alpha-pinene photooxidation product, which was tentatively identified as the C7 homolog of 3-hydroxyglutaric acid, 3-hydroxy-4,4-dimethylglutaric acid. The detection of 2-hydroxy-4-isopropyladipic acid in ambient aerosol provides an explanation for the relatively low atmospheric concentrations of pinic acid found during daytime in forest environments.  相似文献   

6.
The formation of organosulfates from the gas-phase ozonolysis of beta-pinene in the presence of neutral or acidic sulfate particles was investigated in a series of indoor aerosol chamber experiments. The organosulfates were analyzed using high-performance liquid chromatography (LC) coupled to electrospray ionization-time-of-flight mass spectrometry (MS) in parallel to ion trap MS. Organosulfates were only found in secondary organic aerosol from beta-pinene ozonolysis in the presence of acidic sulfate seed particles. One of the detected organosulfates also occurred in ambient aerosol samples that were collected at a forest site in northeastern Bavaria, Germany. beta-Pinene oxide, an oxidation product in beta-pinene/O3 and beta-pinene/NO3 reactions, is identified as a possible precursor for the beta-pinene-derived organosulfate. Furthermore, several nitroxy-organosulfates originating from monoterpenes were found in the ambient samples. These nitroxy-organosulfates were only detected in the nighttime samples, suggesting a role for nighttime chemistry in their formation. Their LC/MS chromatographic peak intensities suggest that they represent an important fraction of the organic mass in ambient aerosols, especially at night.  相似文献   

7.
Propene is widely used in smog chamber experiments to increase the hydroxyl radical (OH) level based on the assumption that the formation of secondary organic aerosol (SOA) from parent hydrocarbon is unaffected. A series of m-xylene/NO(x) photooxidation experiments were conducted in the presence of propene in the University of California CE-CERT atmospheric chamber facility. The experimental data are compared with previous m-xylene/N0(x) photooxidation work performed in the same chamber facility in the absence of propene (Song et al. Environ. Sci. Technol. 2005, 39, 3143-3149). The result shows that, for similar initial conditions, experiments with propene have lower reaction rates of m-xylene than those without propene, which indicates that propene reduces OH in the system. Furthermore, experiments with propene showed more than 15% reduction in SOA yield compared to experiments in the absence of propene. Additional experiments of m-xylene/ NO(x) with CO showed similar trends of suppressing OH and SOA formation. These results indicate that SOA from m-xylene/NO(x) photooxidation is strongly dependent on the OH level present, which provides evidence for the critical role of OH in SOA formation from aromatic hydrocarbons.  相似文献   

8.
The temperature-dependence of secondary organic aerosol (SOA) concentrations is measured using a temperature-controlled smog chamber. Aerosols are generated from reaction of alpha-pinene (14-150 ppb) and ozone at a constant temperature of 22 +/- 2 degrees C in the presence of the OH-scavenger 2-butanol. After the reactions are completed the chamber is heated or cooled in a range from 20 to 40 degrees C. SOA volume concentrations increase at temperatures below the initial formation temperature and decrease at elevated temperatures. The response to the temperature change as measured by percent mass change per degree ranged from -0.4 to -3.6% K(-1), for a total mass reduction of 5-60% upon heating from 22 to 35 degrees C. The reported range is due to two factors: (1) experimental uncertainty, arising mainly from uncertainty in evaporation and condensation behavior of particles lost to the chamber wall; (2) differences in the temperature response from experiment to experiment. Aerosol temperature sensitivity was also measured by tandem differential mobility analysis (TDMA) where similarly generated SOA were heated from 20 to 25 degrees C to 30-40 degrees C with residence times of 0.5-1.5 min, resulting in particle volume reductions of up to 20%. The TDMA experiments indicate that evaporation of the SOA particles in this system occurs with a potentially significant mass transfer limitation (e.g., accommodation coefficient <0.1).  相似文献   

9.
We report secondary organic aerosol (SOA) yields from the ozonolysis of alpha-pinene in the presence of NO and NO2. Experimental conditions are characterized by the [VOC]0/ [NOx]0 ratio (ppbC/ppb), which varies from approximately 1 to approximately 300. SOA yield is constant for [VOC]0/[NOx]0 > approximately 15 and decreases dramatically (by more than a factor of 4) as [VOC]0/[NOx]0 decreases. Aerosol production is completely suppressed in the presence of NO for [VOC]0/[NOx]0 < or = 4.5. Fouriertransform IR analysis of filter samples reveals that nitrate-containing species contribute significantly to the total aerosol mass at low [VOC]0/[NOx]0. Yield reduction is a result of the formation of a more volatile product distribution as [VOC]0/[NOx]0 decreases; we propose that the change in the product distribution is driven by changes in the gas-phase chemistry as NOx concentration increases. We also present two-product model parameters to describe aerosol production from the alpha-pinene/0/NOx system under both high- and low-NOx conditions.  相似文献   

10.
We report secondary organic aerosol (SOA) yields from the ozonolysis of alpha-pinene under both dark and UV-illuminated conditions. Exposure to UV light reduces SOA yield by 20-40%, with a maximum reduction in yield coinciding with a minimum in the amount of terpene consumed (15-30 ppb). The data are consistent with a constant absolute reduction in the yield of approximately 0.03. Gas chromatography mass spectrometry analysis of filter samples indicates that the major products found in alpha-pinene SOA include organic acids (e.g., pinic acid), keto acids (e.g., pinonic acid), and hydroxy keto acids (e.g., 10-hydroxypinonic acid). Analysis of filter-based results suggests that yield reduction is a result of the formation of a more volatile product distribution when experiments are conducted in the presence of UV light. These results implythat previous "dark bag" experiments may overestimate SOA generation from monoterpenes and also that SOA generation in the atmosphere may depend significantly on actinic flux.  相似文献   

11.
The formation of secondary organic aerosol (SOA) produced from α-pinene, linalool, and limonene by ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted at typical room temperatures and air exchange rates. Limonene ozonolysis produced the highest SOA mass concentrations and linalool the lowest with α-pinene being intermediate. Simplified empirical modeling simulations were conducted to provide insights into reaction chemistry. Assessment of variability of particle-bound reactive oxygen species (ROS) may be important in the understanding of health effects associated with particulate matter. The ROS intensities defined as ROS/SOA mass were found to be moderately correlated with the SOA densities. Greater ROS intensities were observed for the cases where ozone was in excess. ROS intensities approached a relatively constant value in the region where ozone was in deficit. The estimated initial ROS half-life time was approximately 6.5 h at room temperature suggesting the time sensitivity of ROS measurements. The ROS formed from terpenoid ozonolysis could be separated into three categories: short-lived/high reactive/volatile, semivolatile/relatively stable and nonvolatile/low reactive species based on ROS measurements under various conditions. Such physical characterization of the ROS in terms of reactivity and volatility provides some insights into the nature of ROS.  相似文献   

12.
The secondary organic aerosol (SOA) module in PMCAMx, a three-dimensional chemical transport model, has been updated to incorporate NOx-dependent SOA yields. Under low-NOx conditions, the RO2 radicals react with other peroxy radicals to form a distribution of products with lower volatilities, resulting in higher SOA yields. At high-NOx conditions, the SOA yields are lower because aldehydes, ketones, and nitrates dominate the product distribution. Based on recent laboratory smog chamber experiments, high-NOx SOA parametrizations were created using the volatility basis-set approach.The organic aerosol (OA) concentrations in the Eastern US are simulated for a summer episode, and are compared to the available ambient measurements. Changes in NOx levels result in changes of both the oxidants (ozone, OH radical, etc.) and the SOA yields during the oxidation of the corresponding organic vapors. The NOx dependent SOA parametrization predicts a maximum average SOA concentration of 5.2 microg m(-3) and a domain average concentration of 0.6 microg m(-3). As the NOx emissions are reduced by 25%, the domain average SOA concentration does not significantly change, but the response is quite variable spatially. However, the predicted average SOA concentrations increase in northern US cities by around 3% but decrease in the rural southeast US by approximately 5%. A decrease of the average biogenic SOA by roughly 0.5 microg m(-3) is predicted for the southeast US for a 50% reduction in NOx emissions.  相似文献   

13.
A series of controlled laboratory experiments are carried out in dual Teflon chambers to examine the presence of oligomers in secondary organic aerosols (SOA) from hydrocarbon ozonolysis as well as to explore the effect of particle phase acidity on SOA formation. In all seven hydrocarbon systems studied (i.e., alpha-pinene, cyclohexene, 1-methyl cyclopentene, cycloheptene, 1-methyl cyclohexene, cyclooctene, and terpinolene), oligomers with MW from 250 to 1600 are present in the SOA formed, both in the absence and presence of seed particles and regardless of the seed particle acidity. These oligomers are comparable to, and in some cases, exceed the low molecular weight species (MW < 250) in ion intensities in the ion trap mass spectra, suggesting they may comprise a substantial fraction of the total aerosol mass. It is possible that oligomers are widely present in atmospheric organic aerosols, formed through acid- or base-catalyzed heterogeneous reactions. In addition, as the seed particle acidity increases, larger oligomers are formed more abundantly in the SOA; consequently, the overall SOA yield also increases. This explicit effect of particle phase acidity on the composition and yield of SOA may have important climatic consequences and need to be considered in relevant models.  相似文献   

14.
To isolate secondary organic aerosol (SOA) formation in ozone-alkene systems from the additional influence of hydroxyl (OH) radicals formed in the gas-phase ozone-alkene reaction, OH scavengers are employed. The detailed chemistry associated with three different scavengers (cyclohexane, 2-butanol, and CO) is studied in relation to the effects of the scavengers on observed SOA yields in the ozone-cyclohexene system. Our results confirm those of Docherty and Ziemann that the OH scavenger plays a role in SOA formation in alkene ozonolysis. The extent and direction of this influence are shown to be dependent on the specific alkene. The main influence of the scavenger arises from its independent production of HO2 radicals, with CO producing the most HO2, 2-butanol an intermediate amount, and cyclohexane the least. This work provides evidence for the central role of acylperoxy radicals in SOA formation from the ozonolysis of alkenes and generally underscores the importance of gas-phase radical chemistry beyond the initial ozone-alkene reaction.  相似文献   

15.
Secondary organic aerosol (SOA) constitutes a significant fraction of total atmospheric particulate loading, but there is evidence that SOA yields based on laboratory studies may underestimate atmospheric SOA. Here we present chamber data on SOA growth from the photooxidation of aromatic hydrocarbons, finding that SOA yields are systematically lower when inorganic seed particles are not initially present. This indicates that concentrations of semivolatile oxidation products are influenced by processes beyond gas-particle partitioning, such as chemical reactions and/or loss to chamber walls. Predictions of a kinetic model in which semivolatile compounds may undergo reactions in both the gas and particle phases in addition to partitioning are qualitatively consistent with the observed seed effect, as well as with a number of other recently observed features of SOA formation chemistry. The behavior arises from a kinetic competition between uptake to the particle phase and reactive loss of the semivolatile product. It is shown that when hydrocarbons react in the absence of preexisting organic aerosol, such loss processes may lead to measured SOA yields lower than would occur under atmospheric conditions. These results underscore the need to conduct studies of SOA formation in the presence of atmospherically relevant aerosol loadings.  相似文献   

16.
A flow-tube reactor was used to study the formation of particles from alpha-pinene ozonation. Particle phase products formed within the first 3-22 s of reaction were analyzed online using a scanning mobility particle sizer and two particle mass spectrometers. The first, a photoionization aerosol mass spectrometer (PIAMS), was used to determine the molecular composition of nascent particles between 30 and 50 nm in diameter. The second, a nano-aerosol mass spectrometer (NAMS), was used to determine the elemental composition of individual particles from 50 nm to below 10 nm in diameter. Molecular composition measurements with PIAMS confirm that both the stabilized Criegee intermediate and hydroperoxide channels of alpha-pinene ozonolysis are operative. However, these channels alone cannot explain the high oxygen content of the particles measured with NAMS. The carbon-to-oxygen mole ratios of suspected nucleating agents are in the range of 2.25-4.0, while the measured ratios are from 1.9 for 9 nm particles to 2.5 and 2.7 for 30 and 50 nm particles, respectively. The large oxygen content may arise by cocondensation of small oxygenated molecules such as water or multistep reactions with ozone, water, or other species that produce highly oxygenated macromolecules. In either case, the increasing ratio with increasing particle size suggests that the aerosol becomes less polar with time.  相似文献   

17.
A series of m-xylene/NOx experiments were conducted in the new Bourns College of Engineering-Center for Environmental Research and Technology dual 90 m3 indoor smog chamber to elucidate the role of NOx on the secondary organic aerosol (SOA) formation potential of m-xylene. The results presented herein demonstrate a clear dependence of m-xylene SOA formation potential on NOx, particularly at atmospherically relevant organic aerosol concentration. Experiments with lower NOx levels generated considerably more organic aerosol mass than did experiments with higher NOx levels when reacted m-xylene was held constant. For example, SOA formation from approximately 150 microg m(-3) reacted m-xylene produced 0.6-9.3 microg m(-3) aerosol mass for NOx concentrations ranging from 286 to 10 ppb. The increase in SOA formation was not attributable to changes in ozone and nitrate concentration. A general discussion about possible influences of NOx on SOA formation for this system is included.  相似文献   

18.
The formation of secondary organic aerosol (SOA) by reaction of ozone with monoterpenes (beta-pinene, delta3-carene, limonene, and sabinene) was studied on a short time scale of 3-22 s with a flow tube reactor. Online chemical analysis was performed with the Photoionization Aerosol Mass Spectrometer (PIAMS) to obtain molecular composition and the Nanoaerosol Mass Spectrometer (NAMS) to obtain elemental composition. Molecular composition data showed that dimers and higher order oligomers are formed within seconds after the onset of reaction, indicating that there is no intrinsic kinetic barrier to oligomer formation. Because oligomer formation is fast, it is unlikely that a large number of steps are involved in their formation. Therefore, ion distributions in the PIAMS spectra were interpreted through reactions of intermediates postulated in previous studies with monomer end products or other intermediates. Based on ion signal intensities in the mass spectra, organic peroxides appear to comprise a greater fraction of the aerosol than secondary ozonides. This conclusion is supported by elemental composition data from NAMS that gave C:O ratios in the 2.2-2.7 range.  相似文献   

19.
Secondary organic aerosol formation from isoprene photooxidation   总被引:3,自引:0,他引:3  
Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used as the radical precursor, substantially constraining the observed gas-phase chemistry; all oxidation is dominated by the OH radical, and organic peroxy radicals (RO2) react only with HO2 (formed in the OH + H2O2 reaction) or NO concentrations, including NOx-free conditions. At high NOx, yields are found to decrease substantially with increasing [NOx], indicating the importance of RO2 chemistry in SOA formation. Under low-NOx conditions, SOA mass is observed to decay rapidly, a result of chemical reactions of semivolatile SOA components, most likely organic hydroperoxides.  相似文献   

20.
Bark beetles are a potentially destructive force in forest ecosystems; however, it is not known how insect attacks affect the atmosphere. The emissions of volatile organic compounds (VOCs) were sampled i.) from bark beetle infested and healthy lodgepole pine (Pinus contorta var. latifolia) trees and ii.) from sites with and without active mountain pine beetle infestation. The emissions from the trunk and the canopy were collected via sorbent traps. After collection, the sorbent traps were extracted with hexane, and the extracts were separated and detected using gas chromatography/mass spectroscopy. Canister samples were also collected and analyzed by a multicolumn gas chromatographic system. The samples from bark beetle infested lodgepole pine trees suggest a 5- to 20-fold enhancement in total VOCs emissions. Furthermore, increases in the β-phellandrene emissions correlated with bark beetle infestation. A shift in the type and the quantity of VOC emissions can be used to identify bark beetle infestation but, more importantly, can lead to increases in secondary organic aerosol from these forests as potent SOA precursors are produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号