首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Information concerning the oxidation of o-xylene and naphthalene, the two main processes for producing phthalic anhydride, is updated and analyzed. New techniques for the preparation of catalysts, all based in the impregnation method and involving the control of parameters such as pH and ionic strength of solutions, are described; the performance of the resulting catalysts is compared with that of catalysts prepared by other methods. Sulfur-containing substances and promoters such as Ag, P, Nb, and Sb have been shown to enhance catalyst performance; studies of their effect on the surface area, acidic properties, and stabilization of the oxidation state of vanadium in supported V2O5 catalysts are described.

The latest attempts to correlate the physicochemical characteristics of the catalysts with their catalytic features are analyzed. FTIR, Raman spectroscopy, adsorption of bases, 51V-NMR, XRD, XPS, SIMS, and electrical conductivity have been used in the study of V2O5/TiO2 catalysts, allowing further understanding of the effects of the properties such as acidity and the state of oxidation of the surface. Particular emphasis has been given to the presence of VIV, which is thought to cause lower selectivity to phthalic anhydride.

For o-xylene oxidation, the formation of involatile by-products has been established as a secondary reaction, accounting for the poor carbon balances obtained under some experimental conditions. Involatile by-products, whose formation has been associated with the presence of strong acid sites, can adsorb on the catalyst surface, leading to deactivation, or undergo total combustion, acting as a source of CO2. Attempts to quantify and characterize those by-products are described.

The modeling of the reaction using both fixed- and fluidized-bed reactors, including the study of parameters such as the inlet temperature and the bath temperature, is analyzed. Models considering catalyst deactivation have been also developed; for o-xylene oxidation, deactivation has been associated with processes both reversible, such as changes in the oxidation state of vanadium, deposition of involatile compounds, and irreversible, such as structural changes, decrease in surface area, sintering, and variation of the promoter concentration at the catalyst surface.

The study of V2O5/TiO2 EUROCAT catalysts, involving a number of European laboratories, is reviewed, and their performance is compared with that of other V2O5/TiO2 catalysts.  相似文献   

2.
In this paper the effect of the vanadium oxide loading on the surface vanadia structure and the activity as well as selectivity in the catalytic reduction of NO with NH3 was studied for a V2O5/TiO2 model system. A series of TiO2 (WO x stabilized anatase) supported vanadia catalysts with varying loadings were characterized by laser Raman spectroscopy, 51V MAS-NMR, V K XANES. To determine the acidic properties, DRIFTS measurements were done with pyridine adsorbed on the samples. The measurements indicate that with increasing active phase loading square pyramidal coordinated surface vanadia species are replaced by an amorphous highly dispersed vanadium oxide phase with a coordination like V2O5. In addition, the ratio of Brønsted to Lewis acid sites is shifted from a comparatively low to an equal level at high loadings. This structural change is accompanied by a clearly improved catalytic activity and selectivity.  相似文献   

3.
Vanadium oxide supported on zirconia modified with WO3 was prepared by adding Zr(OH)4 powder into a mixed aqueous solution of ammonium metavanadate and ammonium metatungstate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed by using FTIR, Raman, and XRD. In the case of calcination temperature at 773 K, for samples containing low loading V2O5 below 18 wt%, vanadium oxide was in a highly dispersed state, while for samples containing high loading V2O5 equal to or above 18 wt%, vanadium oxide was well crystallized due to the high V2O5 loading on the surface of ZrO2. The ZrV2O7 compound was formed through the reaction of V2O5 and ZrO2 at 873 K, and the compound decomposed into V2O5 and ZrO2 at 1,073 K, these results were confirmed by FTIR and XRD. Catalytic tests for 2-propanol dehydration and cumene dealkylation have shown that the addition of WO3 to V2O5/ZrO2 enhanced both catalytic activity and acidity of V2O5-WO3/ZrO2 catalysts. The variations in catalytic activities for both reactions are roughly correlated with the changes of acidity.  相似文献   

4.
A series of V2O5-TiO2 aerogel catalysts were prepared by the sol-gel method with subsequent supercritical drying with CO2. The main variables in the sol-gel method were the amounts of V2O5 and when the vanadium precursor was introduced. V2O5-TiO2 xerogel and V2O5/TiO2 (P-25) were also prepared for comparison. The V2O5-TiO2 aerogel catalysts showed much higher surface areas and total pore volumes than V2O5-TiO2 xerogel and impregnated V2O5/TiO2 (P-25) catalysts. The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), FT-Raman spectroscopy, temperature-programmed reduction with H2 (H2-TPR), and temperature-programmed desorption of ammonia (NH3-TPD). The selective catalytic reduction of NOx with ammonia in the presence of excess O2 was studied over these catalysts. Among various V2O5-TiO2 catalysts, V2O5 supported on aerogel TiO2 showed a wide temperature window exhibiting high NOx conversions. This superior catalytic activity is closely related to the large amounts of strong acidic sites as well as the surface vanadium species with characteristics such as easy reducibility and monomeric and polymeric vanadia surface species. This work was presented at the 7 th Korea-China Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

5.
We investigated the selective oxidation of hydrogen sulfide to elemental sulfur and ammonium thiosulfate by using Bi4V2-xSbxO11-y catalysts. The catalysts were prepared by the calcination of a homogeneous mixture of Bi2O3, V2O5, and Sb2O3 obtained by ball-milling adequate amounts of the three oxides. The main phases detected by XRD analysis were Bi4V2O11, Bi1.33V2O6, BiSbO4 and BiVO4. They showed good H2S conversion with less than 2% of SO2 selectivity with a feed composition of H2S/O2/NH3/H2O/He=5/2.5/5/60/27.5 and GHSV=12,000 h-1 in the temperature ranges of 220–260 ‡C. The highest H2S conversion was obtained for x=0.2 in Bi4V2-xSbxO11-y catalyst. TPR/TPO results showed that this catalyst had the highest amount of oxygen consumption. XPS analysis before and after reaction confirmed the least reduction of vanadium oxide phase for this catalyst during the reaction. It means that the catalyst with x=0.2 had the highest reoxidation capacity among the Bi4V2-xSbxO11-y catalysts.  相似文献   

6.
V2O5/MgF2 catalysts with V2O5 contents ranging from 2.1 to 15.7 wt% were prepared, and the influence of the V2O5 content of the V2O5/MgF2 catalyst on the structure and activity for the ammoxidation of 3-picoline was investigated. XRD data indicate that V2O5 is in a highly dispersed state though segregation of V2O5 into tiny crystallites occurs at and above 8 wt% V2O5. The 3-picoline ammoxidation activity increased with an increase in V2O5 content due not only to the species arising out of interaction of V2O5 and MgF2, but also to the presence of V2O5 microcrystals in the catalysts.  相似文献   

7.
SO2 oxidation over the V2O5/TiO2 SCR catalyst   总被引:3,自引:0,他引:3  
The effects of V2O5 loading of the V2O5/TiO2 SCR catalyst on SO2 oxidation activity were examined by infrared spectroscopy (DRIFT) and SO2 oxidation measurement. Vanadium oxide added to the catalyst was found to be well dispersed over the TiO2 carrier until covered with monolayer V2O5. The rate of SO2 oxidation increased almost linearly with V2O5 loading below the monolayer capacity and attained saturation with further increase. The hydroxyl groups bonded to vanadium atoms, V–OH, might be altered by SO2 oxidation. Both V=O and V–OH groups are likely involved in the adsorption and desorption of SO2 and SO3.  相似文献   

8.
In order to produce thin films of crystalline V2O5, vanadium metal was thermally oxidised at 500 °C under oxygen pressures between 250 and 1000 mbar for 1-5 min. The oxide films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The lithium intercalation performance of the oxide films was investigated by cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS). It was shown that the composition, the crystallinity and the related lithium intercalation properties of the thin oxide films were critically dependent on the oxidation conditions. The formation of crystalline V2O5 films was stimulated by higher oxygen pressure and longer oxidation time. Exposure for 5 min at 750 mbar O2 at 500 °C resulted in a surface oxide film composed of V2O5, and consisting of crystallites up to 200 nm in lateral size. The thickness of the layer was about 100 nm. This V2O5 oxide film was found to have good cycling performance in a potential window between 3.8 and 2.8 V, with a stable capacity of 117 ± 10 mAh/g at an applied current density of 3.4 μA/cm2. The diffusion coefficients corresponding to the two plateaus at 3.4 and 3.2 V were determined from the impedance measurements to (5.2 and 3.0) × 10−13 cm2 s−1, respectively. Beneath the V2O5 layer, lower oxides (mainly VO2) were found close to the metal. At lower oxygen pressure and shorter exposure times, the oxide films were less crystalline and the amount of V4+ increased in the surface oxide film, as revealed by XPS. At intermediate oxygen pressures and exposure times a mixture of crystalline V2O5 and V6O13 was found in the oxide film.  相似文献   

9.
The structural changes of the supported vanadium oxide in the V2O5/TiO2(anatase) EUROCAT EL10V8 powder catalyst during reduction and oxidation at 420 and 490 °C were studied with in-situ X-ray absorption spectroscopy (XAS). The Vanadium K-edge XAS results are compared with pure bulk V2O5. For the reduction–oxidation cycle at 420 °C, similar structural changes as for bulk V2O5 were observed for the supported vanadium oxide: a reduction to the VO2 structure and re-oxidation back to V2O5. After reduction at 490 °C however, a different structure was obtained: very regular “VO6” octahedra with a V2.8+ valence. This may point to a structural support effect.  相似文献   

10.
In situ Raman spectroscopy at temperatures up to 500°C is used for the first time to identify vanadium species on the surface of a vanadium oxide based supported molten salt catalyst during SO2 oxidation. Vanadia/silica catalysts impregnated with Cs2SO4 were exposed to various SO2/O2/SO3 atmospheres and in situ Raman spectra were obtained and compared to Raman spectra of unsupported model V2O5–Cs2SO4 and V2O5–Cs2S2O7 molten salts. The data indicate that (1) the VV complex VVO2(SO4)2 3– (with characteristic bands at 1034 cm–1 due to (V=O) and 940 cm–1 due to sulfate) and Cs2SO4 dominate the catalyst surface after calcination; (2) upon admission of SO3/O2 the excess sulfate is converted to pyrosulfate and the VV dimer (VVO)2O(SO4)4 4– (with characteristic bands at 1046 cm–1 due to (V=O), 830 cm–1 due to bridging S–O along S–O–V and 770 cm–1 due to V–O–V) is formed and (3) admission of SO2 causes reduction of VV to VIV (with the (V=O) shifting to 1024 cm–1) and to VIV precipitation below 420°C.  相似文献   

11.
The effect of Pt addition to a V2O5/ZrO2 catalyst on the reduction of NO by C3H6 has been studied by FTIR spectroscopy as well as by analysis of the reaction products. Pt loading promoted the catalytic activity remarkably. FTIR spectra of NO adsorbed on the catalysts doped with Pt show the presence of two different types of Pt sites, Pt oxide and Pt cluster, on the surface. The amount of these sites depends on Pt contents and the catalyst state. Pt atoms highly disperse on the surface as Pt oxide at low Pt content, being aggregated into Pt metal clusters by increasing Pt amount or reducing the catalysts. The spectral behavior of V=O bands on the surface also supports the formation of Pt clusters. It is concluded that Pt promotes the NO–C3H6 reaction through a reduction–oxidation cycle between its oxide and cluster form.  相似文献   

12.
The catalytic pattern of several oxide carriers (MgO, Al2O3, ZrO2, TiO2, SiO2, HY zeolite) and supported V2O5 (4.7–5.3 wt%) catalysts in the oxidative dehydrogenation of propane to propylene (PODH) has been comparatively investigated. The fundamental role of the oxide support on both reducibility and reactivity of vanadia catalysts has been assessed. A direct relationship between the specific surface activity of oxide carriers and that of vanadia catalysts is discussed. The inverse relationship between the specific activity and the onset temperature of reduction marks the prevailing redox behaviour of V2O5 catalysts in the PODH reaction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Aluminovanadate oxide, “V–Al–O”, has been studied by X-ray photoelectron spectroscopy (XPS) with the emphasis to reveal chemical modifications as a function of the X-irradiation time. Considerable damage was found for V–Al–O and less so for vanadium pentoxide, V2O5, and sapphire, α-Al2O3, both serving as reference samples. Modifications in V–Al–O were seen even at low radiation doses. Absolute and relative shifts in binding energies along with changes of peak intensities and widths demonstrate that an appreciable amount of V5+ is reduced to lower oxidation states. X-ray induced chemical modifications extend at least to the depth sampled by the V3p electrons. It is suggested that the damage is caused by electron-hole pair generation and Auger decay. Al–O–H in V–Al–O is also affected by X-rays. This causes O2 and water desorption as followed by mass spectrometry of the residual gas.  相似文献   

14.
Monolayer vanadium species are mainly in the V(V) valence state, but with XPS a small fraction of V4+ species are identified. Prolonged analysis treatment increases the V4+ concentration. With increasing vanadium concentration, a monolayer coverage corresponding to 1 mg V2O5 per m2 develops, and it contains additional layers with a thickness of about 250 Å at 4 mg V2O5 per m2, covering 3% of its surface area.  相似文献   

15.
Chlorinated benzene, especially 1,2-dichlorobenzene (1,2-DCB), has been widely used as one of surrogate compounds of dioxin to find the noble methods to control dioxin. However, the relationship between the catalytic activity of dioxin surrogate compound and dioxin has not been understood quite well. In this work, we used a vanadium based catalyst (V2O5/TiO2) to compare catalytic activity of chlorinated benzenes and dibenzo-p-dioxins with low-chlorine content using the lab-scale system. We investigated the catalytic conversions of low-chlorinated dioxins, [2-monochlorodibenzo-p-dioxin (2-MCDD), 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD)] and polychlorinated benzenes [1,2-DCB, 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HCB)] using a V2O5/TiO2 catalyst to understand quantitative relationship between dioxin and benzene with the chlorination level. The catalytic decomposition of chlorinated aromatic compounds was following 1,2-DCB > 1,2,3,4-TeCB > 2-MCDD > PeCB ≥ 2,3-DCDD > HCB. It might be more reasonable that PeCB or HCB should be used as the dioxin surrogate compound rather than 1,2-DCB. Also, we investigated the effect of both O2 content and space velocity (SV) on the catalytic decomposition of 1,2-DCB in the presence of V2O5/TiO2 catalyst because these factors should be considered significantly in combustion facilities to control various pollutants. The decomposition of 1,2-DCB shows dependency on the SV while the effect of oxygen content on the catalytic decomposition is negligible in the range of 5–20%.  相似文献   

16.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

17.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

18.
The application of different techniques (diffuse reflectance-UV–vis, 51V NMR, FT-IR of adsorbed pyridine and TPR-H2) in the characterization of vanadia supported on mesoporous Al2O3 catalysts shows that the nature of the vanadium species depends on the V-loading. At V-content lower than 15 wt.% of V-atoms (30% of the theoretical monolayer), vanadium is mainly in a tetrahedral environment. Higher V-contents in the catalyst leads to the formation of octahedral V5+ species and V2O5-like species. Both XRD and textural results indicate that the mesoporous structure of the support is mostly maintained after the vanadium incorporation, and therefore high surface areas were obtained on the final catalysts. Al2O3-suppported vanadia catalysts are active and selective in the oxidative dehydrogenation of ethane, although the catalytic behavior depends on the V-loading. High rates of formation of ethylene per unit mass of catalyst per unit time have also been observed as a consequence of the high dispersion of V-atoms on the surface of the support.  相似文献   

19.
以商业TiO2为载体,采用浸渍法制备了V2O5-WO3-TiO2/SO42-催化剂,考察了硫酸酸化载体TiO2的顺序及硫酸酸化量对氨气选择性催化还原NO活性的影响,采用XRD、BET、FT-IR、TG-DTA、TPD等手段对催化剂进行了表征。BET表征结果表明,随着酸化处理的用酸量增大,催化剂表面积降低;但FT-IR、TG结果表明,增大酸化处理用硫酸量提高了硫酸根与钨之间的电子交互作用。程序升温的活性测试结果表明,硫酸酸化处理对催化剂活性具有促进作用,结合NH3-TPD表征证实了具有酸化处理程序制备的催化剂可以增强表面酸性位,从而使催化剂具有高活性。  相似文献   

20.
Vanadium oxides supported on metal oxide, i.e. Al2O3, MgO and Mg-Al mixed oxide, and V-containing microporous materials (VAPO-5 and MgVAPO-5) have been tested in the oxidative dehydrogenation of C2-C4 alkanes. In all cases, tetrahedral vanadium species (isolated and/or associated) were mainly observed from51V-NMR and diffuse reflectance spectroscopies. The reducibility of V5+-species, determined from the onset-reduction temperature, decreases as follows: VOx/AL > VAPO-5 > MgVAPO-5 =VOx/MG > VOx/MG + AL. The acid character of catalysts, determined from the FTIR spectra of pyridine adsorbed, decreases as: MgVAPO-5 > VOx/AL > VAPO-5 > VOx/MG + AL > VOx/MG. A similar trend between V-reducibility of the catalyst and its catalytic activity for the alkane conversion was observed. However, the selectivity to olefins depends on the acid-base character of catalyst and the alkane fed. In the ODH ofn-butane, the higher the acid character of the catalyst the lower the selectivity to C4-olefins, while in the ODH of ethane an opposite trend between the catalyst acidity and the selectivity to ethene was observed.On leave from the Department of Industrial Chemistry and Materials, V. le Risorgimento 4, 40136 Bologna, Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号