首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学氧化法合成了壳聚糖掺杂聚苯胺(CTS-PANI)、羟丙基壳聚糖掺杂聚苯胺(HPCS-PANI)及羧甲基壳聚糖掺杂聚苯胺(CMC-PANI);利用红外光谱法(FTIR)对合成产物进行表征,用腐蚀试验和电化学测试研究了掺杂态聚苯胺对Q235钢在0.5mol·L~(-1) HCl溶液中的缓蚀性能。结果表明:本征态聚苯胺及掺杂态聚苯胺的缓蚀率随缓蚀剂含量的增加先增大后减小,当缓蚀剂的质量浓度达到50mg·L~(-1)时缓蚀率最大;四种缓蚀剂对Q235碳钢在0.5mol·L~(-1) HCl溶液中的缓蚀率从大到小顺序为CMC-PANIHPCS-PANICTS-PANIPANI,羧甲基壳聚糖掺杂聚苯胺的缓蚀性能最好,缓蚀率可达91.9%。  相似文献   

2.
在生物基呋喃类缓蚀剂的研究基础上,利用Tafel极化曲线和电化学阻抗技术(EIS)研究了Q235碳钢在不同浓度的糠醇缩水甘油醚(FGE)盐酸溶液中的腐蚀行为,并通过静态失重实验分析了Q235碳钢在不同体系中的腐蚀速率。结果表明,4.92×10~(-4)mol·L~(-1)的FGE对Q235碳钢具有最好的缓蚀效果,其缓蚀效率达到94.0%,腐蚀速率为0.076 mg·cm~(-2)·h~(-1)。此外,经证明FGE在Q235碳钢表面的吸附过程符合Langmuir吸附模型,同时发生物理吸附和化学吸附。  相似文献   

3.
双苯并咪唑化合物对碳钢在H2SO4溶液中的缓蚀作用   总被引:1,自引:0,他引:1  
通过腐蚀失重法、电化学法和扫描电镜等方法研究了双苯并咪唑化合物(BBB)对碳钢在0.25 mol/LH2SO4溶液中的缓蚀行为.结果表明,双苯并咪唑化合物缓蚀性能优异,缓蚀效率随缓蚀剂浓度增大而升高,且为同时抑制碳钢腐蚀阴阳极过程的混合型缓蚀剂.在碳钢表面的吸附符合Langmuir等温吸附规律.  相似文献   

4.
IAA 在硫酸溶液中对碳钢的缓蚀性能研究   总被引:1,自引:0,他引:1  
目的研究吲哚-3-乙酸(IAA)在H2SO4(0.1 mol/L)溶液中对碳钢(Q235)的缓蚀性能,降低碳钢生产过程对环境的影响。方法采用动电位极化曲线测试、交流阻抗实验、失重实验和扫描电镜实验分析缓蚀剂的缓蚀性能及作用机理。结果 IAA的缓蚀效率随着缓蚀剂浓度的增加而逐渐增大,当IAA浓度增加到4×10-3mol/L时,缓蚀效率最高达到88.85%。温度升高,缓蚀效率降低,说明IAA不宜于高温下使用。IAA是一种混合型缓蚀剂,对阴极反应和阳极反应均有抑制作用,且在缓蚀剂分子吸附过程中,吸附在碳钢表面的水分子和缓蚀剂分子发生竞争吸附作用,能有效阻止H+的穿越,从而抑制腐蚀H+的放电。IAA在碳钢表面的吸附遵循Langmuir吸附等温模型,该吸附自发进行且是物理吸附和化学吸附共同作用。缓蚀剂通过抑制腐蚀反应的活性点,提高活化能垒,防止碳钢溶解腐蚀。IAA在碳钢表面形成保护膜,减轻了腐蚀。结论 IAA是一种以抑制阳极反应为主的混合型缓蚀剂,在0.1 mol/L H2SO4溶液中能够对Q235碳钢起到优异的保护作用。  相似文献   

5.
利用极化曲线、电化学阻抗谱研究了节节草提取物对Q235钢在盐酸溶液中的缓蚀性能。结果表明,采用热水浸提法得到的节节草提取物,可明显减缓Q235钢在1 mol·L-1HCl溶液中的腐蚀,属阴极抑制为主的混合型缓蚀剂。提取物的缓蚀性能随浓度增大而增强,并在实验温度范围内较稳定。阻抗数据拟合结果表明,提取物中的缓蚀剂分子在Q235钢表面的吸附同时符合Langmuir和Dhar-Flory-Huggins等温吸附方程。光谱分析和SEM观察分别证实了提取物在Q235钢表面的吸附及其对Q235钢在盐酸中的缓蚀作用。  相似文献   

6.
目的研究胡萝卜茎叶提取物(DCSLE)在硫酸介质中对碳钢的腐蚀抑制作用及机理。方法通过超声辅助的手段,用水浸提获得DCSLE,利用红外光谱(FTIR)对其含有的主要官能团进行表征。在25~40℃下,采用失重法、电化学极化和阻抗法(EIS)评价DCSLE在0.5 mol/L H2SO4溶液中对碳钢的缓蚀性能,并讨论了其缓蚀机理。结果DCSLE对碳钢在0.5mol/LH2SO4溶液中的腐蚀具有良好的抑制效果,其缓蚀效率随浓度的增加而增加,随温度的增加而先增加后降低(40℃<25℃<30℃<35℃),35℃下,质量浓度为0.6g/L时,缓蚀效率为92.85%。电化学测试表明,DCSLE是混合型缓蚀剂,但主要是抑制阴极的反应。其缓蚀机理是:DCSLE以物理和化学混合吸附的方式吸附在碳钢表面,形成一层保护膜,从而阻止酸溶液的侵蚀,且吸附遵循Langmuir吸附等温模型。扫描电镜(SEM)观察到加入DCSLE后,碳钢的腐蚀得到了明显控制。结论DCSLE可以有效抑制碳钢在0.5mol/LH2SO4溶液介质中的腐蚀,是一种具有广泛应用前景的天然绿色缓蚀剂。  相似文献   

7.
以超声辅助法提取得到的向日葵盘提取物(HALE)为缓蚀剂,采用腐蚀浸泡试验、电化学试验研究HALE在0.5mol/L H2SO4溶液中对碳钢的缓蚀作用。结果表明:HALE对碳钢缓蚀效果良好,缓蚀率随HALE加量增加而增大,但随温度升高而降低;HALE在碳钢表面的吸附符合Langmuir吸附模型,是以物理吸附为主的混合吸附;电化学测试结果表明HALE是偏阳极混合抑制型缓蚀剂。  相似文献   

8.
周堃  江露  向斌 《表面技术》2018,47(7):219-224
目的探究喹啉、5-苯并喹啉和8-羟基-5-苯并喹啉的健康毒性和生态毒性,以及这三种喹啉类衍生物对碳钢在1 mol/L HCl溶液中的防腐性能。方法采用毒性预测软件T.E.S.T对这三种物质进行毒性预测,筛选出环境友好型缓蚀剂。通过动电位极化曲线方法测定室温下喹啉、5-苯并喹啉和8-羟基-5-苯并喹啉对碳钢的缓蚀性能并比较缓蚀效果。根据吸附等温模型对缓蚀机理进行初步探讨。结果毒性计算表明,5-苯并喹啉没有致畸变性(Ames试验)和发育毒性,小鼠经口毒性LD50在第五级。8-羟基-5-苯并喹啉有致畸变性但无发育毒性,而喹啉存在致畸变性和发育毒性。通过动电位极化曲线测试发现,5-苯并喹啉和8-羟基-5-苯并喹啉对碳钢在1 mol/L HCl溶液中具有优异的缓蚀性能(在1 mmol/L浓度下,ηp(5-苯并喹啉)=94.74%,ηp(8-羟基-5-苯并喹啉)=98.06%)。喹啉的缓蚀效果在1 mmol/L处接近饱和,缓蚀效率仅为85%左右。从自腐蚀电位的移动判断,三种缓蚀剂均属于混合型缓蚀剂。吸附行为研究表明,喹啉、5-苯并喹啉和8-羟基-5-苯并喹啉在碳钢表面的吸附均符合Langmuir吸附,且为物理化学混合吸附。结论 5-苯并喹啉是一种环境友好型缓蚀剂。5-苯并喹啉和8-羟基-5-苯并喹啉对碳钢在1 mol/L HCl溶液中的抗腐蚀性能明显优于喹啉,这是由于苄基和羟基使得缓蚀剂分子在金属表面的化学吸附更加稳定,形成了致密的保护膜,有效减小了碳钢的腐蚀。  相似文献   

9.
陈文  陶永元  管春平  胡小安 《表面技术》2016,45(1):124-130,160
目的研究芭蕉叶提取物(MBLE)在酸性环境中对碳钢腐蚀的抑制行为。方法通过热水浸提法获取MBLE,采用电化学方法研究在不同实验温度和不同浓度下MBLE在1 mol/L盐酸溶液中对碳钢的缓蚀行为,并用扫描电镜(SEM)研究金属表面腐蚀形貌。结果极化曲线研究表明,MBLE对碳钢在1mol/L盐酸中的腐蚀有明显抑制作用,属阴极抑制为主的混合型缓蚀剂;其缓蚀性能随质量浓度增大而增强,25℃时160 mg/L的MBLE缓蚀效率达到94.7%。电化学阻抗图谱研究表明,随着MBLE质量浓度的增大,碳钢表面腐蚀反应的电荷转移电阻逐渐增大,腐蚀反应抑制程度增强。变温试验研究表明,MBLE在实验温度范围内具有较好的稳定性。当MBLE质量浓度为160 mg/L时,温度从25℃增加到40℃,两种电化学方法所得缓蚀效率的变化幅度均在3%以内。MBLE缓蚀剂分子在碳钢表面的吸附服从Dhar-Flory-Huggins等温吸附式,并且属于物理和化学混合吸附。SEM研究表明,盐酸介质中MBLE可有效地抑制碳钢的腐蚀。结论对碳钢在盐酸介质中的腐蚀,MBLE是有效的绿色缓蚀剂。  相似文献   

10.
李雪琪  何闯  于坷坷  罗启灵  龙武剑 《表面技术》2023,52(10):229-240, 258
目的 克服目前制备碳点(Carbon dots, CDs)缓蚀剂存在的耗时、耗能等缺点,在室温下一步制备含席夫碱结构的CDs缓蚀剂,并研究其对Q235碳钢的缓蚀性能。方法 设计了一种简易、可扩展的制备方法,以邻苯二胺和对苯醌为前驱体,无需高温加热便可在室温下反应2 h,从而获得含席夫碱结构的CDs。利用TEM等方法对其结构进行表征,并采用UV和PL光谱评估其在HCl溶液中的长期分散稳定性。通过失重法、电化学测试方法研究了不同浓度CDs对Q235碳钢在1 mol/L HCl溶中的缓蚀性能。通过SEM和三维轮廓测量仪分析腐蚀后碳钢表面形貌及化学组成,提出CDs的缓蚀机理。结果 CDs含C=N键,具有多种含氧、含氮基团,有利于其在钢表面的吸附。CDs在HCl溶液中具有长期分散稳定性。当添加浓度为200 mg/L时,其对碳钢在1 mol/L HCl溶液中的缓蚀效率可达到95.05%。CDs为混合型缓蚀剂,能够同时抑制阴极和阳极反应。CDs在碳钢表面的吸附方式遵循Langmuir等温吸附模型,其缓蚀机理为通过物理和化学吸附方式在碳钢表面形成一层保护膜,从而抑制碳钢的腐蚀。结论 成功为CDs缓蚀剂的合成提供了一种简易、可扩展、高效、省时的方法,而且证明了具有席夫碱结构的CDs对碳钢在1 mol/L HCl溶液中的腐蚀具有显著的抑制能力。  相似文献   

11.
文家新 《表面技术》2024,53(6):123-132
目的 碳钢因其优异的性能被广泛应用于工农业中,为解决碳钢在酸性介质中的腐蚀问题。方法 以氨基硫脲和咪唑-4-甲醛为原料合成了Schiff碱化合物咪唑-4-甲基亚胺基硫脲(MIT),采用傅里叶红外光谱(FT-IR)、核磁共振谱(NMR)及质谱(EI-MS)表征了其分子结构。将MIT化合物作为H2SO4介质中碳钢的缓蚀剂,分别采用静态失重法、电化学测试及腐蚀形貌分析研究了其在0.5mol/LH2SO4溶液中对碳钢的缓蚀性能,通过吸附模型、X-射线光电子能谱(XPS)等方法研究了MIT分子在碳钢表面的吸附行为,采用密度泛函理论(DFT)和分子动力学模拟(MD)方法进行了理论计算研究。结果 MIT在H2SO4溶液中对碳钢的缓蚀效率随其添加量的增大而提高,随腐蚀环境温度的提高而下降,293 K下其在0.5mol/LH2SO4溶液中的最佳质量浓度为240mg/L,对应的缓蚀效率可达95.4%。MIT是一种混合型缓蚀剂,电化学缓蚀机理可解释为“几何覆盖效应”。在碳钢表面的MIT分子吸附属于化学和物理混合吸附(ΔG...  相似文献   

12.
采用静态失重法和电化学技术等研究了2-氨基苯并咪唑(ABT)及2-正己氨基-4-(3′-N,N-二甲氨基-丙基)氨基-6-(苯并咪唑-2-基)氨基-1,3,5-均三嗪(BACT)在0.5mol/L硫酸溶液中对45号碳钢的缓蚀性能。结果表明:在0.5mol/L硫酸溶液中,BACT比ABT具有更好的缓蚀作用。当缓蚀剂浓度为0.20mmol/L时,BACT对碳钢的缓蚀率可达86.07%,而ABT对碳钢的缓蚀率仅为42.13%。通过表面张力仪研究了BACT和ABT在0.5mol/L硫酸溶液中的表面活性。通过量子化学计算和分子动力学模拟方法研究了缓蚀剂在金属Fe界面上的吸附作用。结果表明:BACT的吸附作用明显高于ABT的;BACT分子结构中亲水基、疏水基和三嗪环的引入提高了其在碳钢表面的吸附成膜作用,从而提高了缓蚀剂的缓蚀性能。  相似文献   

13.
采用加热回流萃取法从柚子皮中提取天然缓蚀剂,并采用失重法和极化曲线法测试了提取物在30 ~50 ℃温度范围内,对热轧碳钢在2 mol/ L HCl 介质中的缓蚀性能。失重法测试结果表明,柚子皮提取物对热轧碳钢有良好的缓蚀作用,缓蚀效率随着温度的升高和缓蚀剂浓度的增加而增大,50 ℃时,最大缓蚀效率达到78. 4%。提取物在热轧碳钢表面的吸附作用符合Langmuir 吸附模型,以物理吸附为主。极化曲线测试结果表明,柚子皮提取物主要抑制热轧碳钢腐蚀反应的阴极过程,属于混合型缓蚀剂。  相似文献   

14.
采用失重实验、电化学和扫描电镜等方法研究了2-十一烷基-N-羧甲基-N-羟乙基咪唑啉(UHCI) 在8 mass%氨基磺酸溶液中对碳钢的缓蚀行为。失重实验表明,该缓蚀剂在氨基磺酸溶液中能够有效地抑制碳钢腐蚀,当缓蚀剂的质量分数为0.4 mass%时,碳钢腐蚀速率为0.6370 g/(m2•h),缓蚀效率达到90.12%。极化曲线测试结果表明,该缓蚀剂为混合型缓蚀剂。该缓蚀剂的吸附行为符合Langmuir吸附等温式,吸附机理是一种物理-化学混合吸附。扫描电镜结果也证明 UHCI可有效地抑制氨基磺酸对碳钢的腐蚀。  相似文献   

15.
以硫脲、二乙烯三胺和有机羧酸为原料制备一种咪唑烷硫酮衍生物缓蚀剂(CI-R缓蚀剂),采用失重法、极化曲线法、扫描电镜(SEM)观察等方法,研究了缓蚀剂CI-R在85℃、500μg/g HCl+1%NH4Cl(质量分数,下同)溶液中对碳钢的缓蚀作用及其吸附模型。结果表明:缓蚀剂CI-R是一种混合型缓蚀剂,对试验溶液中的碳钢具有良好的缓蚀作用,加入量为20μg/g时,缓蚀率可达90.9%;其在碳钢表面的吸附遵循Langmuir吸附等温式,通过在碳钢表面形成一层致密的保护膜,阻碍腐蚀介质与金属基体的接触,抑制了金属的腐蚀。  相似文献   

16.
通过失重试验、电化学测试以及量子化学计算方法研究了新型杂环噁二唑化合物1-苯基-2-{5-(1,2,4-三氮唑)-1甲基-(1,3,4-噁二唑)-2-硫}-乙酮(PTOE)在0.5 mol/L H2SO4中对Q235钢(碳钢)的缓蚀性能,并用扫描电镜方法观察了碳钢表面的腐蚀形貌.结果表明,PTOE在0.5 mol/L H2SO4中对Q235钢有高达92.7%的缓蚀作用,能同时抑制碳钢腐蚀的阴、阳极反应过程.碳钢的阻抗值随PTOE浓度增加而增大,其在碳钢表面的吸附符合Langmuir等温式.同时用量子化学中的从头算方法对缓蚀剂的分子结构与缓蚀性能的关系进行了研究.  相似文献   

17.
目的通过三乙烯四胺和苯甲酸合成IMBT,再利用IMBT、H3PO3和甲醛经过曼尼希反应制得IMBTM,并探究其对碳钢在HCl水溶液中的缓蚀作用。方法采用动态失重法、电化学技术以及热力学等方法研究缓蚀剂IMBT和IMBTM在60℃、1 mol/L的盐酸溶液中对10#碳钢的缓蚀性能和吸附规律。结果利用IR对产物进行表征,均得到了产物特征峰。在动态失重试验中,IMBT和IMBTM两种缓蚀剂的质量浓度为3 g/L时,碳钢的腐蚀速率分别为3.92、2.94 g/(m2·h),缓蚀剂的缓蚀率分别为79.65%和84.75%。极化曲线试验表明随着两种缓蚀剂浓度增加,腐蚀电位正移,阳极电流密度下降明显。交流阻抗的测试显示随着两种缓蚀剂浓度增大,容抗弧半径逐渐增大,且在相同浓度下,添加IMBTM时的容抗弧半径更大。另外,随着缓蚀剂浓度的增加,拟合参数Rct增大、Cdl减小,证明缓蚀剂在金属表面取代了水,并吸附成膜。研究等温吸附模型,发现数据带入Langmuir等温吸附方程后,表现出了很好的线性关系。结论在1 mol/L HCl溶液中,IMBT和IMBTM对10#碳钢均有缓蚀作用,且IMBTM的缓蚀作用较高。两种缓蚀剂均属于阳极型缓蚀剂,对阳极的缓蚀作用较高。且两种化合物在10#碳钢表面上的吸附过程为自发放热过程,其吸附规律遵循Langmuir等温吸附式,属于单分子层吸附。  相似文献   

18.
目的研究柚子皮提取物对C38钢在1 mol/L HCl中的缓蚀作用。方法通过索氏提取器从柚子皮中提取天然绿色缓蚀剂,进而与0.01 mol/L KI进行复配,采用失重法和电化学测试法分析柚子皮提取物的缓蚀作用机理。结果失重实验表明,柚子皮提取物对C38钢的缓蚀作用最高达93%,而与0.01mol/L KI复配使用后缓蚀效率最高达98%以上。同时表明其在碳钢表面的吸附符合Langmuir吸附等温式;Tafel极化曲线表明其能同时抑制碳钢腐蚀的阴、阳极过程;碳钢的阻抗值随着柚子皮提取物浓度的增加而增大。结论柚子皮提取物是很好的缓蚀剂,与卤素离子复配后效果更佳。  相似文献   

19.
低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制   总被引:1,自引:3,他引:1  
利用失重、腐蚀电化学方法和表面分析技术研究了碳钢在富含H2S的乙醇胺(MEA)溶液中的腐蚀行为,以及添加缓蚀剂后对其电化学行为的影响.讨论了IMC—C5缓蚀剂对该体系的缓蚀作用机理.结果表明,脱硫系统中吸收了硫化氢的乙醇胺溶液对碳钢的腐蚀十分严重,IMC—C5缓蚀剂能有效控制碳钢在该体系中的腐蚀.其缓蚀作用主要来自于吸附缓蚀剂分子对腐蚀阳极过程的抑制,为阳极吸附型缓蚀剂.  相似文献   

20.
目的对N,N'-二(二苯基膦基)-1-苯乙胺(NPM)的合成、结构表征及其在盐酸介质中对碳钢的缓蚀性能进行研究。方法用红外光谱、元素分析和熔点测试等方法对NPM的结构进行表征,采用静态失重法、动电位极化曲线法和电化学阻抗法研究NPM在盐酸介质中对碳钢的缓蚀作用,研究腐蚀体系温度、HCl浓度、NPM浓度和腐蚀体系静置时间对NPM缓蚀率的影响,探讨NPM在碳钢表面上的吸附机理。结果动电位极化曲线法研究结果表明NPM是一种混合型缓蚀剂。NPM的缓蚀率随NPM浓度的增加而增大,当NPM的质量浓度为140 mg/L时,NPM在25℃的1.0 mol/L HCl溶液中的缓蚀率达到94.71%;NPM的缓蚀率随腐蚀体系温度的升高而降低,随HCl浓度的增大而减小,但随腐蚀体系静置时间的延长缓蚀率逐渐增大。NPM在碳钢表面的吸附符合Langmuir吸附等温方程式,属于自发进行的物理和化学吸附。结论所合成的化合物NPM是一种高效的混合型有机缓蚀剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号