首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
毛葱膳食纤维性质及结构分析   总被引:1,自引:0,他引:1  
以毛葱膳食纤维为研究对象,对其不同粒度条件下的持水力、膨胀力、持油力、阳离子交换能力和胆固醇吸附能力等功能性质进行研究,并采用电子显微镜扫描、红外光谱分析和X-射线衍射分析等方法测定其结构。结果表明:毛葱中可溶性膳食纤维质量分数为5.79%;持水力、膨胀力、持油力、阳离子交换能力分别为14.83?g/g、19.57?mL/g、1.95?g/g和0.62?mmol/g。在pH?2条件下胆固醇吸附能力为126.73?mg/g;在pH?7条件下为159.50?mg/g。扫描电子显微镜结果表明毛葱膳食纤维呈无规则片状网格结构,结构蓬松;傅里叶红外光谱分析表明毛葱膳食纤维具有C—H键、O—H键、C=O键等纤维素及半纤维素的特征吸收峰。X-射线衍射结果表明毛葱膳食纤维的结晶度较好的保留了膳食纤维的结晶区和非结晶区。  相似文献   

2.
以紫花苜蓿为研究对象,对苜蓿上(大于60 cm)、中(30~60 cm)、下(0~30 cm)三部分茎叶的基本成分、活性成分、功能性质进行比较,并对不同粉碎粒度苜蓿茎叶营养物质的溶出量和功能性质进行分析。苜蓿叶中蛋白质、灰分、脂肪、维生素C、可溶性膳食纤维、多糖、多酚、总黄酮的含量,以及膨胀力、对亚硝酸钠和胆固醇的吸附能力均高于茎秆,且上部叶片最高;苜蓿茎秆中不溶性膳食纤维的含量以及持水力、持油力高于叶片。随着苜蓿上部叶片的粉碎粒度由0.20~0.25 mm减小到0.063~0.08 mm,蛋白质、多酚、总黄酮、粗多糖的溶出量分别由27.98%、12.31、6.42、20.72 mg/g增加到32.87%、13.86、7.71、22.97 mg/g;膨胀力先增大后减小,粉碎粒度为0.125~0.16 mm时达到最大,为4.40 mL/g;对胆固醇的吸附能力由2.45 mg/g (pH=2)、7.65 mg/g (pH=7)分别增加至6.01、9.66 mg/g;对亚硝酸钠的吸附能力由437.91 μg/g (pH=2)、106.43 μg/g (pH=7)分别增加至501.51、108.02 μg/g。随着苜蓿上部茎秆的粉碎粒度由0.20~0.25 mm减小到0.063~0.08 mm,持油力由4.86 g/g减小到3.44 g/g;持水力先增大后减小,粉碎粒度为0.125~0.16 mm时达到最大,为6.56 g/g。苜蓿叶片和茎秆可用于开发不同功能的食品,减小粉碎粒度可提高营养物质的溶出量,适当进行粉碎可具有更好的功能性质。  相似文献   

3.
为改善红花籽粕可溶性膳食纤维的部分理化性质和其吸附特性,以红花籽粕为原料,分别考察碱-酶法、酶-高温蒸煮法、碱-高温蒸煮法3种不同改性方式对其可溶性膳食纤维(SDF)的持水力、膨胀力、持油力等部分理化性质及对葡萄糖、阳离子、胆固醇和亚硝酸根离子吸附能力的影响。结果表明,碱-高温蒸煮法优于其他两种方法,碱-高温蒸煮法改性的红花籽粕SDF的持水力、膨胀力和持油力最佳,分别为5.58 g/g、3.98 mL/g和4.38 g/g;对葡萄糖吸附能力为16.08 mmol/g,在1% NaOH添加量为1~4 mL时,阳离子吸附效果最佳;在pH为2和7时,对胆固醇吸附能力分别为7.68 mg/g、10.14 mg/g,对亚硝酸盐吸附能力为56.43 μg/g、30.53 μg/g。  相似文献   

4.
以金针菇粉为主要原料,采用单螺杆挤压改性工艺制备高品质金针菇膳食纤维,比较普通金针菇膳食纤维和高品质金针菇膳食纤维的持水力、持油力、膨胀力、结合水力、胆固醇吸附能力、结合甘氨胆酸钠和牛磺胆酸钠能力。采用电子显微镜、傅里叶红外光谱和X-射线衍射扫描研究改性前、后金针菇膳食纤维的结构。结果表明:高品质金针菇膳食纤维中可溶性膳食纤维含量略高于普通金针菇,达到(10.210±0.130)%。当高品质金针菇膳食纤维粒度为100目时,持水力为(16.115±0.120)g/g,持油力(6.201±0.060)g/g,膨胀力(16.958±0.120)mL/g,结合水力(8.044±0.090)g/g,与普通膳食纤维相比均明显提高。当pH=2.0和pH=7.0时,高品质金针菇膳食纤维胆固醇吸附能力有所增加,100目时分别为(0.359±0.004)mg/(mL·g)和(1.107±0.004)mg/(mL·g)。当高品质金针菇膳食纤维粒度为120目时,结合甘氨胆酸钠能力和结合牛磺胆酸钠能力相对较好,分别为(67.367±0.600)%和(63.149±0.400)%。扫描电子显微镜结果表明,挤压改性后的高品质金针菇膳食纤维表面疏松多孔。傅里叶红外光谱分析表明,改性前、后的主要官能团结构没有发生明显变化,改性后部分特征峰强度有所减弱。X-射线衍射扫描分析发现,改性前、后金针菇膳食纤维素晶体构型未发生改变,衍射强度减弱。挤压改性使金针菇膳食纤维的理化功能性质得到改善,微观结构发生变化。  相似文献   

5.
浒苔不溶性膳食纤维理化性质研究   总被引:1,自引:0,他引:1  
研究了浒苔不溶性膳食纤维的理化性质。研究结果表明:浒苔膳食纤维的持水力为12.22g/g,膨胀力为6.40mL/g,吸附饱和脂肪的能力为11.20g/g,吸附不饱和脂肪的能力为8.65g/g,pH值7条件下基本不吸附亚硝酸根离子,pH值2条件下吸附亚硝酸根离子的能力逐渐增大,90min时为6.44mmol/g。以上研究表明浒苔膳食纤维具有较好的理化性质。  相似文献   

6.
为研究发芽对绿豆皮膳食纤维结构及功能性质的影响,采用X射线衍射分析、红外光谱分析和电子显微镜扫描等方法测定其结构,并对其持水力、持油力、膨胀力、阳离子交换能力、吸附葡萄糖能力、吸附胆固醇能力和吸附NO2 - 能力等功能性质进行对比研究。结果表明:发芽处理后绿豆皮中总膳食纤维含量增加3.40%,可溶性膳食纤维增加13.62%。发芽绿豆皮膳食纤维的持水力、持油力、膨胀力明显提高,分别达到(6.97±0.32)、(4.93±0.10) g/g、(4.79±0.11) mL/g,阳离子交换能力略有降低,为(0.47±0.02) mmol/g,吸附葡萄糖能力增加,为(8.37±0.18) mmol/g,吸附胆固醇能力增加,为(2.23±0.11) mg/(mL·g),吸附NO2 - 能力有所降低,为(3.92±0.09) mg/g。扫描电子显微镜结果表明,发芽可使绿豆皮膳食纤维表面出现更多孔隙和褶皱,有利于膳食纤维吸附能力的提高;X射线衍射结果表明,发芽没有改变绿豆皮膳食纤维的结晶度,较好地保留了膳食纤维的结晶区和非结晶区;傅里叶红外光谱分析表明,发芽没有破坏绿豆皮膳食纤维的官能团结构。绿豆经发芽处理后改善了绿豆皮膳食纤维的大部分功能性质,较好地保留了其结构,有利于绿豆副产物的开发利用。  相似文献   

7.
利用网纹瓜果皮为原料制备膳食纤维,研究不同粒度(40目~120目)的膳食纤维的持水力、持油力、膨胀力、平均粒径、休止角、胆固醇吸附能力、阳离子交换能力、淀粉酶活力抑制率等性质,并通过扫描电镜、红外光谱分析其结构。结果表明:在40目~120目范围内,80目膳食纤维的持水力、持油力、膨胀力和胆固醇吸附能力最高,分别为8.56 g/g、2.77 g/g、9.93 mL/g和18.64 mg/g。平均粒径越小,膳食纤维的明度越大。休止角范围为37.22°~44.76°,80目以下的膳食纤维流动性较好。阳离子交换能力和淀粉酶活力抑制率均随着粒径的降低而增加,最大值分别达0.53 mmol/L和19.96%。扫描电镜结果显示,80目的膳食纤维具有较多的孔隙和比表面积,有利于提高其持水力和吸附能力。傅里叶变换红外光谱分析表明网纹瓜膳食纤维具备多糖化合物的典型红外光谱结构。  相似文献   

8.
以马铃薯全粉加工副产物为原料,采用超声波辅助酶、碱结合的方法提取马铃薯膳食纤维,利用单因素试验和响应面试验对提取条件进行优化,确定最佳提取工艺为超声波功率180 W、超声温度50℃、α-淀粉酶添加量2%、酶解时间35 min、NaOH浓度3%、碱解时间14 min时,膳食纤维提取率为66.56%。采用理化分析方法,对提取物进行品质特性的测定,结果表明:总膳食纤维的持水力为9.02 g/g,持油力为1.3 g/g,膨胀力为3.5 mL/g、阳离子交换能力为0.72 mmol/kg、葡萄糖吸附能力为137.2 mg/g,胆固醇吸附能力在pH 2和pH 7时分别为9.54、16.82 mg/g,亚硝酸根离子吸附能力为7.31 mg/g。  相似文献   

9.
研究了低温真空干燥和真空冷冻干燥对小麦膳食纤维理化性质的影响情况。实验发现经过两种方式所制备的小麦膳食纤维具有较强的持水力、膨胀力、吸附脂肪和亚硝酸盐的能力,但是除两者之间的持水力和吸附亚硝酸盐的能力无明显区别外,经过低温真空干燥制备的不溶性膳食纤维膨胀力强于经过真空冷冻干燥制备的膳食纤维膨胀力,而且小麦膳食纤维吸附饱和脂肪的能力强于吸附不饱和脂肪的能力。  相似文献   

10.
采用酸碱处理法制备了缘管浒苔水不溶性膳食纤维,其产率、持水力和膨胀力分别超过西方常用的小麦麸皮膳食纤维。先后研究了此膳食纤维对胆酸钠和NO2-的吸附能力,结果表明,膳食纤维对胆酸钠和胆固醇均具有较明显的吸附能力。对于NO2-,在模拟人体胃液环境p H 2的体系中,吸附能力较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号