首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Different effects of support hydrophilicity and metal-oxide on the performance of Pt-based catalysts were investigated with the aim of improving the mass activities toward methanol electrooxidation. Both potentiodynamic and potentiostatic measurements revealed that improved surface hydrophilicity of multi-wall carbon nanotubes (MWCNTs) could promote the dispersion of Pt nanoparticles and, consequently, promote the Pt utilization and reduce the polarization in methanol electrooxidation. In addition, WO3 was shown to play a supportive role in enhancing catalytic activity. The interaction between Pt and WO3 was examined by CO-stripping and CO oxidation transient experiments. The results suggested that the activity and the kinetics of monolayer COads electrooxidation of Pt nanoparticles are enhanced by the adjacent WO3 via a bifunctional mechanism, which accounts for improved activity in methanol electrooxidation.  相似文献   

2.
Two types of Pt nanowires (NWs)/C catalysts with different aspect ratios and one type of Pt nanoparticles/C catalyst are successfully synthesized, and DME electrochemical performance on different extent consecutive surfaces is investigated. The morphology and crystallization are confirmed with electron microscopes and XRD. The electrochemical tests show that the nanowire catalysts, especially the one with higher aspect ratio, possess higher electrochemical surface areas, higher absorption capacity of DME, higher CO tolerance, higher electron transfer coefficient, and higher activity towards DME electrooxidation than those of the nanoparticle catalyst. The results prove that the consecutive surface favors for direct dimethyl ether fuel cell (DDFC) anodic catalyst, which are contributive to the study of the mechanism of DME electrooxidation on Pt surface and designing an effective catalyst for anodic DDFC.  相似文献   

3.
In this work, Pt nanowire networks supported on high surface area carbon (Pt NWNs/C) are synthesized as electrocatalysts for direct methanol fuel cells (DMFCs). The electrocatalytic behavior of Pt NWNs/C catalysts for the methanol and adlayer CO oxidation reactions is investigated and the results are compared with the Pt nanoparticles (NPs) supported on carbon (Pt NPs/C). The results indicate that Pt NWNs are characterized by interconnected nanoparticles with large number of grain boundaries, downshifted d-band center and reduced oxophilicity, which results in the enhanced surface mobility of oxygen-containing species such as COads and OHads. The enhanced surface mobility of COads and OHads in turn facilitates the removal of intermediate CO species during the methanol oxidation. The activity of the Pt NWNs/C electrocatalyst for the methanol oxidation reaction and electrooxidation of adsorbed CO is also evaluated by cyclic voltammetry, CO stripping, and kinetic analysis. The results show that Pt NWNs/C catalysts have a significantly higher electrocatalytic activity for the methanol oxidation reaction as compared to Pt NPs/C catalysts. The enhanced electrocatalytic activity of Pt NWNs/C catalysts is mainly due to the existence of large number of the grain boundaries of the interconnected nanoparticles of the unique Pt NWN structure.  相似文献   

4.
Pt nanowires and nanoparticles were selectively synthesized in mesoporous silica templates FSM-16 and HMM. The wires and particles were characterized by physicochemical methods. Extracted Pt nanoparticles on HOPG show Coulomb blockade phenomena in STM/STS measurements. Pt nanowires and -particles in FSM-16 shows high catalytic activity and selectivity in preferential oxidation (PROX) of CO in H2.  相似文献   

5.
The incorporation of nanosciences into catalysis studies has become the most powerful approach to understanding reaction mechanisms of industrial catalysts and designing new-generation catalysts with high selectivity. Nanoparticle catalysts were synthesized via controlled colloid chemistry routes. Nanostructured catalysts such as nanodots and nanowires were fabricated with nanolithography techniques. Catalytic selectivity is dominated by several complex factors including the interface between active catalyst phase and oxide support, particle size and surface structure, and selective blocking of surface sites, etc. The advantage of incorporating nanosciences into the studies of catalytic selectivity is the capability of separating these complex factors and studying them one by one in different catalyst systems. The role of oxide–metal interfaces in catalytic reactions was investigated by detection of continuous hot electron flow in catalytic nanodiodes fabricated with shadow mask deposition technique. We found that the generation mechanism of hot electrons detected in Pt/TiO2 nanodiode is closely correlated with the turnover rate under CO oxidation. The correlation suggests the possibility of promoting catalytic selectivity by precisely controlling hot electron flow at the oxide–metal interface. Catalytic activity of 1.7–7.2 nm monodispersed Pt nanoparticles exhibits particle size dependence, demonstrating the enhancement of catalytic selectivity via controlling the size of catalyst. Pt–Au alloys with different Au coverage grown on Pt(111) single crystal surface have different catalytic selectivity for four conversion channels of n-hexane, showing that selective blocking of catalytic sites is an approach to tuning catalytic selectivity. In addition, presence and absence of excess hydrogen lead to different catalytic selectivity for isomerization and dehydrocyclization of n-hexane on Pt(111) single crystal surface, suggesting that modification of reactive intermediates by the presence of coadsorbed hydrogen is one approach to shaping catalytic selectivity. Several challenges such as imaging the mobility of adsorbed molecules during catalytic reactions by high pressure STM and removing polymeric capping agents from metal nanoparticles remain.  相似文献   

6.
Y. H. Liu  F. Wu  C. Wu 《Fuel Cells》2012,12(3):415-419
Pt‐SnOx nanoparticles were synthesized by the ethylene glycol (EG) method in solution of H2PtCl6 and SnCl2, with the same concentrations of Pt and Sn, but different pH values. The pH value after the end of platinum reduction reaction was not changed any more, except that a certain amount of water was added to deposit the Pt‐SnOx nanoparticles on the carbon support. The pre‐nanocatalysts were characterized by X‐ray photoelectron spectroscopy (XPS) to investigate the contents of Pt and Sn, and their catalytic activities for ethanol electrooxidation were tested by cyclic voltammetry (CV). The result was that the Sn contents were increasing as the Pt/Sn atomic ratios of 2.2, 2.6, 5.1, 7.4, 8.7, with the decreasing end pH values of 4.5, 5.0, 5.5, 6.5, 7.5, and the Pt contents became less than the addition in the preparation solution while the end pH values were <5.5, but the catalytic activities for ethanol electrooxidation were not so much regularly changed. Besides, from the end pH value of 5.5 to the increasing 9.0, all the platinum nanoparticles could be completely deposited on the carbon support, under the condition that only a certain amount of water was added.  相似文献   

7.
N. Zhang  S. Zhang  Y. Gao  G. Yin 《Fuel Cells》2013,13(5):895-902
In this work, Pt nanoparticles are deposited on NbO2‐modified carbon composites and evaluated as promising direct methanol fuel cell (DMFC) electrocatalysts. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) indicate that Pt nanoparticles (about 2.5 nm) are uniformly dispersed on NbO2‐modified carbon composites. Electrochemical measurements show that the mass activity toward methanol electrooxidation on Pt/NbO2‐C is as high as 3.0 times that of conventional Pt/C. Meanwhile, the onset potential of CO oxidation is negatively shifted by about 46 mV as compared with that of Pt/C, which means that the synergistic effect between NbO2 and Pt facilitates the feasible removal of poisoning intermediate CO during methanol electrooxidation. X‐ray photoelectron spectroscopy (XPS) characterizations reveal the electron transfer from Nb to Pt, which suppress the poisoning CO adsorption on Pt nanoparticles and facilitate methanol electrooxidation. NbO2 nanoparticles facilitate methanol electrooxidation on Pt/C catalyst by synergistic effect and electronic effect, which represents a step in the right direction for the development of excellent fuel cell anode electrocatalysts.  相似文献   

8.
Carbon-supported bimetallic PtmPb1 (m = 1, 2, 3) electrocatalysts with different Pt/Pb atomic ratios were synthesized by a polyol method. The X-ray diffraction results reveal that a PtPb alloy formed in the PtmPb1/C electrocatalysts. TEM images show that the PtPb nanoparticles distribute uniformly on the carbon support, and are about 4–5 nm in size. The PtmPb1/C bimetallic catalysts show superior activities toward methanol electrooxidation reaction (MOR) than the Pt/C in alkaline media. Both CO stripping measurements and density functional theory studies reveal that CO adsorption decreased significantly on the PtmPb1/C bimetallic catalysts compared with on pure Pt, which may offer an explanation for the enhanced MOR activity of the PtmPb1/C bimetallic catalysts.  相似文献   

9.
Preparation of size-controlled Pt catalysts supported on alumina   总被引:1,自引:0,他引:1  
It was found that Pt particles on Al2O3-supported Pt catalysts prepared using Pt complex nanoparticles formed in a water-in-oil microemulsion became very small and uniform compared to those prepared using reduced Pt metal nanoparticles or by an impregnation method. Moreover, the catalytic activity of the catalyst composed of very small Pt particles, which was prepared using the complex nanoparticles, was higher in the NO–CO reaction than those of the other catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
This research is aimed to improve the activity and stability of ternary alloy Pt–Ru–Ni/C catalyst. A novel anodic catalyst for direct methanol fuel cell (DMFC), carbon supported Pt–Ru–Ni–P nanoparticles, has been prepared by chemical reduction method by using NaH2PO2 as a reducing agent. One glassy carbon disc working electrode is used to test the catalytic performances of the homemade catalysts by cyclic voltammetric (CV), chronoamperometric (CA) and amperometric it measurements in a solution of 0.5 mol L–1 H2SO4 and 0.5 mol L–1 CH3OH. The compositions, particle sizes and morphology of home‐made catalysts are evaluated by means of energy dispersive analysis of X‐ray (EDAX), X‐ray diffraction (XRD) and transmission electron micrographs (TEM), respectively. TEM images show that Pt–Ru–Ni–P nanoparticles have an even size distribution with an average diameter of less than 2 nm. The results of CV, CA and it curves indicate that the Pt–Ru–Ni–P/C catalyst shows significantly higher activity and stability for methanol electrooxidation due to the presence of non‐metal phosphorus in comparison to Pt–Ru–Ni/C one. All experimental results indicate that the addition of non‐metallic phosphorus into the Pt–Ru–Ni/C catalyst has definite value of research and practical application for enhancing the performance of DMFC.  相似文献   

11.
The development of a new kind of material that is a nanostructured catalytic material with an environmentally benign nature that can be used for alternative energy has acquired significance in recent years. In this context, the use of heterogeneous catalysts for the transesterification of vegetable oils has gained prominence due to their eco‐friendly and reusable nature. Hence in the present study, pure hydroxyapatite (HAp) and hydroxyapatite/platinum (HAp/Pt) nanostructured particles have been prepared successfully through a facile chemical method without templates and surfactants and their catalytic activity investigated for transesterification of natural vegetable oil to bioenergy (biodiesel). The textural and structural features of pure HAp and HAp/Pt were investigated using various characterization techniques such as x‐ray diffraction, Fourier transform infrared (FTIR) and Raman spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The elements present in the prepared nanostructures were confirmed through energy dispersive spectroscopy (EDS) and x‐ray photoelectron spectroscopy (XPS) techniques. The XPS analysis also confirms the metallic nature of the platinum in HAp/Pt. The specific surface area and porous nature of the prepared nanostructured catalysts were studied using the N2 physisorption Brunauer‐Emmett‐Teller‐Barrett‐Joyner‐Halenda (BET‐BJH) method. The catalytic activity of the pure HAp nanoparticles and HAp/Pt core shell nanorods with the Simarouba glauca plant seed oil was investigated. The obtained results indicate that the pristine HAp nanoparticles and HAp/Pt core shell nanorods (NRs) show 91.4% and 87.1% fatty acid methyl ester (FAME) conversion, respectively, potentially offering environmental benign biocatalysts for biofuel production from natural feed stock.  相似文献   

12.
An electrochemical method for depositing redispersible, lower size gold nanoparticles from a novel polyelectrolyte‐gold complex is described. The size of gold nanoparticles is in the range 6.2–15.4 nm. The gold nanoparticles, first deposited on platinum surface are transferable into water. They can also be directly in situ‐electrodeposited on to materials like carbon, carbon nanotubes or conducting polymers for an end use as electro catalysts. The composites Au‐MWCNT, Pt‐MWCNT, Au‐Carbon, and Pt‐Carbon are synthesized and tested for their electrocatalytic activity. The composites exhibit good catalytic activity in sensing dopamine or electrooxidation of methanol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Four novel composite catalysts have been developed by the electrodeposition of Pt onto glassy carbon electrode (GCE) modified with polyindoles: polyindole, poly(5-methoxyindole), poly(5-nitroindole) and poly(5-cyanoindole). As-formed composite catalysts are characterized by SEM, XRD and electrochemical analysis. Compared with Pt nanoparticles, respectively, deposited on the bare GCE and on the GCE modified with polypyrrole, the four newly developed composite catalysts exhibit higher catalytic activity towards formic acid electrooxidation by improving selectivity of the reaction via dehydrogenation pathway and thus mostly suppressing the generation of poisonous COads species. The enhanced performance is proposed to come from the synergetic effect between Pt and polyindoles and the increase of electrochemical active surface area (EASA) of Pt on polyindoles.  相似文献   

14.
Dianxue Cao 《Electrochimica acta》2003,48(27):4021-4031
The surface of Pt nanoparticles was cleaned and saturated with hydrogen by treatment first with a 3% aqueous solution of H2O2 and then with hydrogen gas under water at room temperature. Reaction between the surface hydrogen and aqueous RuCl3 deposited 0.18 surface equivalents of Ruad onto the Pt nanoparticles. The deposition was repeated several times, with each reaction depositing ∼0.18 surface equivalents more Ruad onto the Pt-Ruad nanoparticles. The resulting Pt-Ruad nanoparticles were analysed using cyclic voltammetry, CO stripping voltammetry, and as catalysts for electrooxidation of MeOH in three-electrode experiments and in prototype direct methanol fuel cells. The optimum surface coverage (θRu) for electrooxidation of MeOH was ∼0.33 under these conditions.  相似文献   

15.
Zhicheng Tang 《Carbon》2007,45(1):41-46
Vulcan XC-72 carbon black for use as a catalyst support was treated in three different plasma atmospheres, H2, Ar and O2. The results showed that the microstructure and surface functional groups were significantly changed after plasma treatment. Pt/C catalysts were prepared by chemical reduction of H2PtCl6 with HCHO and those with untreated and plasma treated carbon black supports were characterized and tested for methanol electrooxidation. TEM showed that the platinum nanoparticles on H2 and Ar plasma treated carbon were uniform and well distributed. Those on untreated carbon were uniform in most regions but coalesced in others. On O2 plasma treated carbon agglomeration of the platinum nanoparticles was significant. XRD showed that the catalysts were composed of face-centered cubic Pt nanoparticles and XPS showed that they were metallic with no oxides present. Cyclic voltammetry and chronoamperometry were used to study methanol electrooxidation on the Pt/C catalysts in a solution of 0.5 M H2SO4 + 0.5 M CH3OH, and showed that the catalytic activity those using H2 and Ar plasma treated carbon was higher than for the untreated one. Catalysts supported by O2 plasma treated carbon showed no catalytic activity. The treatment atmosphere of carbon therefore had a large effect on the catalyst performance, with the H2 plasma being the best.  相似文献   

16.
The catalytic hydrogenation of 2,4-dinitrotoluene (DNT) to 2,4-toluenediamine (TDA) is a key step in the production of polyurethanes; therefore, the development of efficient hydrogenation catalysts for industrial use is of paramount importance. In the present study, chromium(IV) oxide nanowires were decorated by palladium and platinum nanoparticles in a one-step, simple, and fast preparation method to yield highly efficient hydrogenation catalysts for immediate use. The nanoparticles were deposited onto the surface of CrO2 nanowires by using ultrasonic cavitation and ethanol as a reduction agent. Beneficially, the catalyst became catalytically active right at the end of the preparation and no further treatment was necessary. The activity of the Pd- and Pt-decorated CrO2 catalysts were compared in the hydrogenation of 2,4-dinitrotoluene (DNT). Both catalysts have shown high activity in the hydrogenation tests. The DNT conversion exceeded 98% in both cases, whereas the 2,4-toluenediamine (TDA) yields were 99.7 n/n% and 98.8 n/n%, with the Pd/CrO2 and Pt/CrO2, respectively, at 333 K and 20 bar H2 pressure. In the case of the Pt/CrO2 catalyst, 304.08 mol of TDA formed with 1 mol Pt after 1 h hydrogenation. Activation energies were also calculated to be approximately 24 kJ∙mol−1. Besides their immediate applicability, our catalysts were well dispersible in the reaction medium (methanolic solution of DNT). Moreover, because of their magnetic behavior, the catalysts were easy to handle and remove from the reaction media by using a magnetic field.  相似文献   

17.
It has been found that Pt eluted into the (La0.7Sr0.2Ba0.1)ScO3-δ perovskite oxide exhibited higher catalytic activity for CO oxidation than for H2 oxidation under separate reaction conditions, a behaviour which differs from that of conventional Pt catalysts. The unique activity appeared when ionic Pt in the perovskite lattice was partly reduced, forming Pt nanoparticles on the surface.  相似文献   

18.
Electrochemical activities and structural features of Pt/Sn catalysts supported by hydrogen-reduced SnO2 nanowires (SnO2NW) are studied, using cyclic voltammetry, CO stripping voltammetry, scanning electron microscopy, and X-ray diffraction analysis. The SnO2NW supports have been grown on a carbon paper which is commercially available for gas diffusion purposes. Partial reduction of SnO2NW raises the CO tolerance of the Pt/Sn catalyst considerably. The zero-valence tin plays a significant role in lowering the oxidation potential of COads. For a carbon paper electrode loaded with 0.1 mg cm−2 Pt and 0.4 mg cm−2 SnO2NW, a conversion of 54% SnO2NW into Sn metal (0.17 mg cm−2) initiates the COads oxidation reaction at 0.08 V (vs. Ag/AgCl), shifts the peak position by 0.21 V, and maximizes the CO tolerance. Further reduction damages the support structure, reduces the surface area, and deteriorates the catalytic activity. The presence of Sn metal enhances the activities of both methanol and ethanol oxidation, with a more pronounced effect on the oxidation current of ethanol whose optimal value is analogous to those of PtSn/C catalysts reported in literature. In comparison with a commercial PtRu/C catalyst, the optimal Pt/Sn/SnO2NW/CP exhibits a somewhat inferior activity toward methanol, and a superior activity toward ethanol oxidation.  相似文献   

19.
A Pt/C catalyst modified by the Keggin-structure molybdovanadophosphoric acid (PMV) is prepared by cyclic voltammetry and the modified Pt/C catalyst is studied for methanol electrooxidation. The results show that the PMV modified Pt/C catalyst has increased the electron transfer coefficient of the rate-determining step and diminished the adsorption of CO on Pt/C catalysts. Significant improvements in the catalytic activity and stability for methanol electrooxidation are observed, and it indicates that the PMV combined with Pt/C catalyst can be considered as a good electrocatalyst material for potential application in direct methanol fuel cells.  相似文献   

20.
Nano-structured PdxPt1−x (x = 0-1) composite catalysts supported on Ti substrate are successfully prepared by electrodeposition method, and the morphology and phase of the catalysts are analyzed by field emission scanning electron microscope (FE-SEM) and X-ray energy dispersion spectroscopy (EDS). The activity and stability of the PdxPt1−x/Ti composite catalysts are assessed for the electrooxidation of alcohols (methanol, ethanol and 2-propanol) in alkaline medium using cyclic voltammetry and chronoamperometry techniques. The results show that the Pd and Pt form PdxPt1−x nano-structured composite catalysts, uniformly distributed on the Ti substrate. The electrocatalytic activity and stability of the PdxPt1−x nanocatalysts depend strongly on the atomic ratios of Pd and Pt. Among the synthesized catalysts, the Pd0.8Pt0.2/Ti displays the best catalytic activity and stability for the electrooxidation reaction of alcohols investigated in alkaline medium under conditions in this study, and shows the potential as electrocatalysts for direct alcohol fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号