首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Kakaei 《Fuel Cells》2012,12(6):939-945
We report a Pt/Vulcan carbon–polyaniline (VC–PANI) catalyst for the oxygen reduction reaction (ORR). This electrocatalyst was prepared from Pt nanoparticles supported by a VC–PANI composite substrate. Electrochemical performance was measured using potentiostat/galvanostats technique and a proton exchange membrane fuel cell (PEMFC) test station. The electrochemical properties of the electrodes were characterized using linear sweep voltammetry, AC impedance spectroscopy and chronoamperometry. Electrochemical characterization by hydrogen adsorption/desorption cyclic voltammetry and CO stripping voltammetry indicates that the electrochemical active surface areas of the Pt/VC–PANI are comparable to the commercial catalyst. The performance of the Pt/VC–PANI and Pt/C(E‐TEK) + PANI electrocatalysts were found to be 1.82 and 1.33 times higher than of the Pt/C(E‐TEK) electrode. The surface morphologies of the electrodes were characterized by using scanning electron microscopy (SEM). PANI has a fibrous structure and the improved performance was attributed to the PANI effect and synergistic effects between the carbon Vulcan and the PANI fiber. These results indicate that Pt/VC–PANI is a promising catalyst for the ORR in PEMFCs using an H2/O2 feed.  相似文献   

2.
Y. B. Fu  Z. H. Liu  G. Su  X. R. Zai  M. Ying  J. Yu 《Fuel Cells》2016,16(3):377-383
Improving the performance of anode is a crucial step for increasing power output of marine sediment microbial fuel cells (SMFCs). A multi‐walled carbon nanotube/polyaniline (MWCNTs/PANI) modified anode was prepared by the way of electrochemical deposition and its electrochemical performance is investigated in this paper. Result shows that the wettability of carbon felt becomes better and the number of bacteria (9.52 × 1012 m−2) on anode biofilm is increased respectively, which is 9 times higher than that of the unmodified. The anti‐polarization ability of the modified anode increases significantly and its kinetic activity of electron transfer increases 4 times. Its exchange current density is 3.62 × 10−5 A cm−2. The maximum power density of the modified SMFC reaches 527.0 mW m−2, which is 4 times higher than that of the unmodified one. Finally, a novel molecular synergistic mechanisms for the enhanced SMFC is also presented, based on the higher bacteria number, the capacitive performance of PANI, the hydrogen bond interaction and higher conductivity of MWCNTs. This excellent electrochemical performance makes the MWCNTs/PANI composite be a potential choice for higher output SMFC.  相似文献   

3.
Phase change materials (PCMs) function based on latent heat stored on or released from a substance over a slim temperature range. Multiwalled carbon nanotubes (MWCNTs) and polyaniline are important elements in sensor devices. In this work, pristine and polyaniline‐grafted MWCNTs (PANI‐g‐MWCNTs) were applied as conductive carbon‐based fillers to make PCMs based on paraffin. The attachment of PANI to the surface of MWCNTs was proved by Fourier transform Infrared analysis. Dispersion of MWCNTs in paraffin was studied by wide‐angle X‐ray scattering. Heating and solidification of PCM nanocomposites were investigated by differential scanning calorimetry, while variation in nanostructure of PCMs during heating/solidification process was evaluated by rheological measurements. It was found that after 30 min of sonication, the samples filled with 1 wt % MWCNTs have melting and solidification temperatures of 29 and 42 °C, respectively. It was also found that PANI attachment to MWCNTs significantly changes thermal conductivity behavior of PCM nanocomposites. The developed MWCNTs‐based sensor elements responded sharply at low MWCNTs content, and experienced an almost steady trend in conductivity at higher contents, while PANI‐g‐MWCNTs sensor followed an inverse trend. This contradictory behavior brought insight for understanding the response of PCMs against thermal fluctuations. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45389.  相似文献   

4.
The water-dispersible electrochormic nanocomposites, polyaniline (PANI) connected multi-walled carbon nanotubes (MWCNTs) by covalent bond were synthesized through a grafting polymerization process of aniline monomer with functionalized MWCNTs. N,N′-dicyclohexylcarbodiimide (DCC) was used as dehydrant for functionalization process of MWCNTs with p-phenylenediamine (PPD). The transmission electron microscope (TEM), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to study the morphologies, thermal stabilities and chemical structures of the nanocomposites, respectively. The UV-vis absorbance spectra and cyclic voltammetry behaviors of nanocomposites were tested by UV-vis spectrometer and electrochemical workstation, respectively. It is shown show that PANI-MWCNTs nanocomposites not only exhibit good water solubility, but also exhibit excellent film-forming properties. The results confirm that the π-π interactions and interfacial covalent bond between PANI and MWCNTs endow PANI-MWCNTs excellent electrochemical and electrochromic properties. The conductive network composed of PANI and MWCNTs can significantly improve the ion transports, electron conduct and electrochromic performance of PANI. The PANI-MWCNTs-0.6% nanocomposite film shows highest optical contrast value (0.78) and shortest response time (3.8 seconds for coloring and 3.2 seconds for bleaching) among neat PANI and PANI-MWCNTs nanocomposites.  相似文献   

5.
Conventional cellulosic paper, rendered electro‐conductive, may hold considerable promise for diversified applications in such areas as electro‐magnetic interference shielding and energy storage. Here, an electro‐conductive cellulosic paper was prepared by surface application of multi‐walled carbon nanotubes (MWCNTs)/polyaniline (PANI) nanocomposites onto a conventional base paper. MWCNTs/PANI nanocomposites were prepared by in situ polymerization of aniline with different contents of MWCNTs and used as electro‐conductive filler for the fabrication of electro‐conductive surface‐coated paper. The achieved MWCNTs/PANI nanocomposites exhibited a core‐shell structure, as evidenced by TEM. Effects of feeding ratios of MWCNTs on the rheological behavior of nanocomposite coatings, as well as the mechanical properties and electrical conductivity of surface‐coated paper were studied. Results revealed that the rheological behavior of the nanocomposite coatings showed strong dependence on the MWCNTs content. Moreover, both the electro‐conductivity and mechanical properties of surface‐coated paper were improved as a function of surface application of MWCNTs/PANI nanocomposites, particularly, in presence of an optimum content of MWCNTs. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46329.  相似文献   

6.
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry  相似文献   

7.
Nanocomposites of polyaniline (PANI) with organophilic montmorillonite (O-MMT) and hydrophilic montmorillonite (Na-MMT) were prepared. The nanocomposites were characterized using FT-IR, D.C. electrical conductivity measurement and cyclic voltammetry techniques. It was found that PANI/Na-MMT nanocomposite has lower (5.8%) and PANI/O-MMT nanocomposite has higher (29.4%) conductivity compared to pure polyaniline. Cyclic voltammetry experiments showed that both nanocomposites are electroactive. The anticorrosive properties of a 100 μm thickness coating of nanocomposites on iron coupons were evaluated and compared with pure polyaniline coating. According to the results PANI/MMT nanocomposites have enhanced corrosion protection effect in comparison to pure polyaniline coating. Results showed also that the PANI/Na-MMT and PANI/O-MMT nanocomposites have considerably different corrosion protection efficiencies in various corrosive environments.  相似文献   

8.
Q. Yi  H. Chu  M. Tang  Y. Zhang  X. Liu  Z. Zhou  H. Nie 《Fuel Cells》2014,14(6):827-833
In this paper multi‐walled carbon nanotubes (MWCNTs) supported binary AgNi nanoparticles are prepared by chemical reduction of Ag and Ni precursors with NaBH4. Fe/PANI catalyst is obtained by direct pyrolysis of Fe‐doped polyaniline in N2 atmosphere at high temperature. Results show that the Fe/PANI catalyst presents high electroactivity for oxygen reduction reaction (ORR) in alkaline media. The onset potential for ORR is 0.01 V(vs Hg/HgO) and the ORR current density is 3.4 mA cm−2@2000rpm at –0.4 V(vs HgO/Hg). A gas diffusion electrode is fabricated by using the Fe/PANI as the electrocatalyst of ORR. In alkaline media the AgNi/MWCNT catalyst displays efficient electroactivity for hydrazine oxidation. A lower onset potential of –0.5 V(vs Hg/HgO) and high current density for hydrazine oxidation are observed. A novel membrane‐less direct hydrazine/air fuel cell is designed by using the AgNi/MWCNT catalyst as the anode and the gas diffusion electrode as the cathode. The as‐fabricated fuel cell works properly and presents higher power density and current density.  相似文献   

9.
In this study, polyaniline (PANI) and polyaniline/clay nanocomposites were prepared via in situ oxidative polymerization. The morphology of nanocomposites structures was investigated by X-ray diffraction (XRD). The chemical structures of PANI and PANI/clay nanocomposites were examined via Fourier transform infrared (FT-IR) spectroscopy. Polyaniline-based pigments were introduced into epoxy paint and applied on steel substrates. The effect of clay addition and the type of clay cation, including Na+ in natural clay (MMT) and alkyl ammonium ions in organo-modified montmorillonite (OMMT), on the anticorrosion performance of epoxy-based coatings was investigated through electrochemical Tafel test, electrochemical impedance spectroscopy and immersion measurements in NaCl solution. The stability of the adhesion of the neat and modified epoxy coatings to the steel surface was also examined. The results indicated that introduction of PANI/OMMT nanocomposite into epoxy paint results in improved anticorrosion properties in comparison with PANI/MMT and neat PANI.  相似文献   

10.
Thermoelectric materials can convert heat into electricity when a temperature gradient is present. The investigation of conductive polymers such as polyaniline (PANI ) and poly(3,4‐ethylenedioxythiophene) as active materials for thermoelectric generators in the room temperature range is gaining interest because of several key advantages offered by these materials. The relative ease of solution processing, their mechanical stability and flexibility together with low density and low thermal conductivity make conductive polymers suitable for integration in a thermoelectric generator. Polymers offer remarkably low thermal conductivity values but modest Seebeck coefficient and electrical conductivity. In this work, polymer/inorganic nanocomposites of PANI with carbon particles such as single wall carbon nanohorns (SWCNHs ) were prepared via solution mixing of the precursors in order to increase the electrical conductivity by means of polymer matrix/nanohorn electronic junctions. The electrical conductivity and Seebeck coefficient were estimated on PANI /SWCNH films and pressed pellets and through‐plane thermal conductivity was determined on films. The thermal stability of PANI /SWCNH composites was evaluated by means of TGA /DSC coupled with residual gas analysis. It was found that a proper concentration of SWCNHs in PANI ?(+/?)‐camphor‐10‐sulfonic acid (CSA) film was effective in increasing the electrical conductivity without decreasing the Seebeck coefficient. © 2017 Society of Chemical Industry  相似文献   

11.
Dulse‐derived porous carbon (DDPC)–polyaniline (PANI) nanocomposites were fabricated by a method based on the in situ chemical oxidation polymerization of aniline on DDPC. The characterization of the material showed that the nano‐PANI was grown on the surface of DDPC in the form of nanosticks or nanoparticles. The DDPC–PANI nanocomposites were further used as electrode materials for energy‐storage applications. Meanwhile, the effect of the amount of aniline on the electrochemical performance of DDPC–PANI was also investigated. The results show that a maximum specific capacitance of 458 F/g was achieved for the DDPC–PANI nanocomposites; this was higher than that of the DDPC electrode (218 F/g), and the PANI electrode (318 F/g). The specific capacitance of DDPC–PANI remained 66.0% of the initial value after 5000 cycles; this was higher than that of PANI (50.5%). Finally, a device of DDPC–PANI–activated carbon (AC) was assembled with DDPC–PANI as a positive electrode, which exhibited a high energy density of 9.02 W h/kg, which was higher than that of PANI–AC device. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45776.  相似文献   

12.
王永祯  李智辉  蔡晓岚 《炭素》2012,(2):32-37,12
以多壁碳纳米管(MWCNTs)为载体,通过化学悬浮聚合法制备碳纳米管/铁-钴/聚苯胺(MWCNT/Fe-Co/PANI)三重复合材料,并用作染料敏化太阳能电池对电极.通过场发射扫描电子显微镜(FESEM)和X-射线衍射法(XRD)等对所制MWCNT/Fe -Co/PANI复合材料进行表征,结果表明:MWCNT/Fe-Co/PANI复合材料呈微观多乳网状结构,Fe-Co纳米合金颗粒负载于MWCNTs上,PANI对MWCNT/Fe-Co又进行了管外键联及包覆.通过三电极系统测试了MWCNT/Fe-Co/PANI复合电极在I-3/I-电解质中的循环伏安曲线,结果显示:复合电极具有很好的电催化效果.MWCNTs与PANI形成的规则结构可促进对电解质的吸附,而Fe-Co纳米合金则增强了电极的催化效应.  相似文献   

13.
Zhichao Hu  Qin Ran  Litong Jin 《Carbon》2010,48(13):3729-361
A simple and versatile method based on noncovalent supramolecular attachment and layer-by-layer (LBL) assembly is proposed to prepare nanostructured hybrid conducting polymer. The negatively charged poly(sodium 4-styrenesulfonate) (PSS) wrapped multiwalled carbon nanotubes (MWCNTs) is doped with cationic polyaniline (PANI) nanofibers via LBL assembly, and a well-defined PANI/MWCNTs composite was obtained. The LBL assembly process is characterized by scanning electron microscopy, energy dispersive spectrometry and electrochemical methods. It was found that PSS wrapped MWCNTs inside the multilayer film can dope nanostructured PANI effectively and shift its electroactivity to a neutral pH environment. Moreover, the conducting composites show amperometric response for hydrogen peroxide with a linear range of 2.0 × 10−7-1.0 × 10−3 mol L−1.  相似文献   

14.
The preparation and properties of poly(acrylic acid) (PAA)-doped polyaniline (PANI) film electrodes further modified by electrodeposition of platinum particles were investigated by cyclic voltammetry and in situ conductivity measurement. The PANI/PAA film exhibits a better electroactivity and higher stability, even in solutions of lower acidity, although its polymerization rate is decreased three-fold compared to that of PANI. The conductivity of the PANI/PAA film increases by a factor of two compared to that of PANI. The effects of the carboxylic acid groups of PAA in the PANI matrix on the performance of the film are discussed. The electrocatalytic activity of PANI/PAA/Pt for reduction of hydrogen and oxidation of MeOH is higher than that of PANI modified with Pt particles alone. Characterization of the electrodes by SEM shows the platinum modification procedure yields roughly spherical catalyst particles 0.51mum in diameter dispersed throughout the polyaniline.  相似文献   

15.
The preparation and properties of poly(acrylic acid) (PAA)-doped polyaniline (PANI) film electrodes further modified by electrodeposition of platinum particles were investigated by cyclic voltammetry and in situ conductivity measurement. The PANI/PAA film exhibits a better electroactivity and higher stability, even in solutions of lower acidity, although its polymerization rate is decreased three-fold compared to that of PANI. The conductivity of the PANI/PAA film increases by a factor of two compared to that of PANI. The effects of the carboxylic acid groups of PAA in the PANI matrix on the performance of the film are discussed. The electrocatalytic activity of PANI/PAA/Pt for reduction of hydrogen and oxidation of MeOH is higher than that of PANI modified with Pt particles alone. Characterization of the electrodes by SEM shows the platinum modification procedure yields roughly spherical catalyst particles 0.51mum in diameter dispersed throughout the polyaniline.  相似文献   

16.
石墨烯/聚苯胺复合阳极的制备及在MFC中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学氧化还原法制备高纯度石墨烯(GR),利用电化学修饰法得到石墨烯/聚苯胺(GR/PANI)膜阳极,采用红外光谱(FI-IR)、X射线衍射(XRD)、场发射扫描电镜(FESEM)对所制备复合电极进行了表征,采用循环伏安法(CV)、交流阻抗法(EIS)考察了复合电极的电化学性能。将GR/PANI膜阳极应用于固定床微生物燃料电池(MFC),考察了电池的产电性能。均匀地附着在石墨烯表面,GR/PANI膜电极具有良好可逆性,其电阻小、导电性良好。GR/PANI膜阳极应用于MFC,最大功率密度和开路电压分别为230.2 mW·m-2和834.6 mV,比未修饰阳极的最大功率密度和开路电压分别提高了110.6%和34.8%,GR/PANI膜阳极的表观内阻也由未修饰阳极的843.2Ω降低为469.4 Ω,且电池启动时间大大缩短,产电稳定性增强。结果表明,GR/PANI复合物是一种优良的电极材料,GR/PANI膜阳极MFC具有良好的产电性能。  相似文献   

17.
Multiwalled carbon nanotube (MWCNT) was modified through plasma polymerization of aniline by applying different radio frequency (radio frequency (RF): 13.56?MHz) powers. The modified MWCNTs were investigated in terms of morphology, chemical structure, and thermal behaviors, indicating the formation of composites based on the surface modification of MWCNT with polyaniline (PANI). These composites were then used in amperometric glucose biosensor, which was constructed by immobilizing glucose oxidase on premodified Pt electrode with PANI/MWCNT composites. The biosensor based on the composite obtained under RF power of 60?W exhibited the high sensitivity of 54.91?µA mM?1 cm?2 to glucose.  相似文献   

18.
Micelle-encapsulated multi-walled carbon nanotubes (MWCNTs) with sodium dodecyl sulfate (SDS) were used as catalyst support to deposit platinum nanoparticles. High resolution transmission electron microscopy (HRTEM) images reveal the crystalline nature of Pt nanoparticles with a diameter of ∼4 nm on the surface of MWCNTs. A single proton exchange membrane fuel cell (PEMFC) with total catalyst loading of 0.2 mg Pt cm−2 (anode 0.1 and cathode 0.1 mg Pt cm−2, respectively) has been evaluated at 80 °C with H2 and O2 gases using Nafion-212 electrolyte. Pt/MWCNTs synthesized by using modified SDS-MWCNTs with high temperature treatment (250 °C) showed a peak power density of 950 mW cm−2. Accelerated durability evaluation was carried out by conducting 1500 potential cycles between 0.1 and 1.2 V with 50 mV s−1 scan rate, H2/N2 at 80 °C. The membrane electrode assembly (MEA) with Pt/MWCNTs showed superior performance stability with a power density degradation of only ∼30% compared to commercial Pt/C (70%) after potential cycles.  相似文献   

19.
Electrolytically deposited Cu on polyaniline film covered Pt substrate (Cu/PANI/Pt) is used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were characterized using cyclic voltammetry, impedance spectroscopy, chronomethods, rotating disc voltammetry and polarization studies. The morphology and composition of the modified film were obtained using SEM and EDAX techniques. The electrooxidation of methanol in NaOH is found to be more efficient on Cu/PANI/Pt than on bare Cu (Cu), electrodeposited Cu on Cu (Cu/Cu) and electrodeposited Cu on Pt (Cu/Pt) substrates. Partial chemical displacement of dispersed Cu on PANI with Pt or Pd further improved its performance towards methanol oxidation.  相似文献   

20.
Operation of a proton exchange membrane (PEM) fuel cell without external humidification (or 0% relative humidity, abbreviated as 0% RH) of the reactant gases is highly desirable, because it can eliminate the gas humidification system and thus decrease the complexity of the PEM fuel cell system and increase the system volume power density (W/l) and weight power density (W/kg). In this investigation, a PEM fuel cell was operated in the temperature range of 23-120 °C, in particular in a high temperature PEM fuel cell operation range of 80-120 °C, with dry reactant gases, and the cell performance was examined according to varying operation parameters. An ac impedance method was used to compare the performance at 0% RH with that at 100% RH; the results suggested that the limited proton transfer process to the Pt catalysts, mainly in the inonomer within the membrane electrode assembly (MEA) could be responsible for the performance drop. It was demonstrated that operating a fuel cell using a commercially available membrane (Nafion® 112) is feasible under certain conditions without external humidification. However, the cell performance at 0% RH decreased with increasing operation temperature and reactant gas flow rate and decreasing operation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号