首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have newly developed an advanced SOI p-MOSFET with strained-Si channel on insulator (strained-SOI) structure fabricated by SIMOX (separation-by-implanted-oxygen) technology. The characteristics of this strained-SOI substrate and electrical properties of strained-SOI MOSFETs have been experimentally studied. Using strained-Si/relaxed-SiGe epitaxy technology and usual SIMOX process, we have successfully formed the layered structure of fully-strained-Si (20 nm)/fully-relaxed-SiGe film (290 nm) on uniform buried oxide layer (85 nm) inside SiGe layer. Good drain current characteristics have been obtained in strained-SOI MOSFETs. It is found that the hole mobility is enhanced in strained-SOI p-MOSFETs, compared to the universal hole mobility in an inversion layer and the mobility of control SOI p-MOSFETs. The enhancement of the drive current has been kept constant down to 0.3 μm of the effective channel length  相似文献   

2.
We have studied p-channel advanced SOI MOSFETs using double SiGe heterostructures fabricated by the combination of SIMOX and high-quality strained-Si/SiGe regrowth technologies, in order to introduce higher strain in Si channel. It was revealed that this double SiGe structure of second Si0.82Ge0.18Si0.93Ge0.07 allows the second SiGe layer to relax by about 70%, because of the elastic energy balance between the second and the first-SiGe layers. As a result, the strain of Si layer on this double SiGe structure becomes higher than that of the single SiGe structure. Strained SOI p-MOSFETs using the double layer SiGe structure exhibited higher hole mobility than that of strained-SOI MOSFETs with single Si0.9Ge0.1 structure. The hole mobility enhancement of 30% and 45% was achieved in the strained-SOI MOSFETs with double SiGe structures, compared to that of the universal curve and the control-SOI MOSFETs, respectively  相似文献   

3.
We have developed high-performance strained-SOI CMOS devices on thin film relaxed SiGe-on-insulator (SGOI) substrates with high Ge content (25%) fabricated by the combination of separation-by-implanted-oxygen (SIMOX) and internal-thermal-oxidation (ITOX) techniques without using SiGe buffer structures. The maximum enhancement of electron and hole mobilities of strained-SOI devices against the universal mobility amounts to 85 and 53%, respectively. On the other hand, we have also observed the reduction of carrier mobility in a thinner strained-Si layer or at higher vertical electric field conditions. For the first time, we have demonstrated a high-speed CMOS ring-oscillator using strained-SOI devices, and its improvement amounts to 63% at the supply voltage of 1.5 V, compared to control-SOI CMOS.  相似文献   

4.
The hole mobility of LOCOS-isolated thin-film silicon-on-insulator (SOI) p-channel MOSFET's fabricated on SOI substrates with different buried oxide thickness has been investigated. Two types of SOI wafers are used as a substrate: (1) SIMOX wafer with 100-nm buried oxide and (2) bonded SOI wafer with 100-nm buried oxide. Thin-film SOI p-MOSFET's fabricated on SIMOX wafer have hole mobility that is about 10% higher than that on bonded SOI wafer. This is caused by the difference in the stress under which the silicon film is after gate oxidation process. This increased hole mobility leads to the improved propagation delay time by about 10%  相似文献   

5.
We have examined physical mechanisms responsible for the reduction in both electron and hole mobility in strained-silicon-on-insulator (SOI) CMOS devices with thin strained-Si layers. A slight decrease in the electron mobility with thinning strained-Si layers is attributable to the quantum-mechanical confinement effect of the inversion layer electrons, originating in the conduction band offset of the strained-Si layers. Also, the diffusion of Ge atoms into the SiO/sub 2//strained-Si interface is found to generate interface states near the valence band edge, leading to the reduction in hole mobility in the lower E/sub eff/ region through Coulomb scattering. Moreover, the decrease in hole mobility enhancement in both thin and thick strained-Si structures at the higher electric field is caused by the reduction of the energy splitting between the heavy and the light hole bands, with an increase in the electric field. Based on considerations of these factors affecting the mobility reduction, the strained-Si thickness and the Ge content have been designed to realize high-speed strained-SOI CMOS under the 90-nm technology and beyond.  相似文献   

6.
We have recently developed [110]-surface strained silicon-on-insulator (SOI) n-MOSFETs. The strained-silicon (Si) layer with the strain of about 0.6% has been fabricated on a relaxed SiGe-on-insulator (SGOI) structure with the germanium (Ge) content of 25%. The electron mobility characteristics along the various current directions have been experimentally studied and compared to those of [100]- and [110]-surface unstrained-bulk MOSFETs. We have demonstrated, for the first time, that the electron mobility of [110] strained-SOI MOSFETs is enhanced, compared to that of [110] unstrained-bulk MOSFETs. The electron mobility enhancement depends on the current-flow directions, and the maximum enhancement factor amounts to 23% along the <001> direction. As a result, the electron mobility ratio of [110] strained-SOI MOSFETs to [100] universal mobility is 81% at maximum, whereas the ratio of [110] unstrained-bulk MOSFETs is only 66%. Therefore, [110] strained-SOI devices are also promising candidates for future high-performance CMOS.  相似文献   

7.
A new SOI/bulk hybrid technology with devices on both the thin film and the bottom substrate of SIMOX wafers has been studied. By fabricating ESD protection circuits on the substrate of SIMOX wafers, ESD reliability of high performance CMOS SOI circuits can be significantly improved. Despite the higher surface defect density and micro-roughness on the bottom substrate of SIMOX wafers compared to ordinary bulk wafers, similar electron mobility, intrinsic thermal oxide properties and hot-carrier degradation are observed among MOSFET's fabricated on the different substrates. Thus, the hybrid technology is capable of combining the advantages both of SOI and bulk technology in fabricating high performance circuits  相似文献   

8.
The electron effective mobility in ultrathin-body n-channel metal-oxide-semiconductor field-effect transistors fabricated on Ge-free 30% strained-Si directly on insulator (SSDOI) is mapped as the body thickness is scaled. Effective mobility and device body thickness were extracted using current-voltage and gate-to-channel capacitance-voltage measurements as well as cross-sectional transmission electron microscopy. Devices with body thicknesses ranging from 2 to 25 nm are studied. Significant mobility enhancements ( ~1.8x) compared to unstrained SOI are observed for 30% SSDOI with body thicknesses of above 3.5 nm. The mobility exhibits a sharp drop as the body thickness is scaled below 3.5 nm  相似文献   

9.
[110]-surface strained-SOI CMOS devices   总被引:1,自引:0,他引:1  
We have newly developed [110]-surface strained-silicon-on-insulator (SOI) n- and p-MOSFETs on [110]-surface relaxed-SiGe-on-insulator substrates with the Ge content of 25%, fabricated by applying the Ge condensation technique to SiGe layers grown on [110]-surface SOI wafers. We have demonstrated that the electron and the hole mobility enhancement of [110]-surface strained-SOI devices amounts to 23% and 50%, respectively, against the mobilities of [110]-surface unstrained MOSFETs. As a result, the electron and the hole mobility ratios of [110]-surface strained-SOI MOSFETs to the universal mobility of (100)-surface bulk-MOSFETs increase up to 81% and 203%, respectively. Therefore, the current drive imbalance between n- and p-MOS can be reduced. Moreover, both the electron and the hole mobilities of the [110]-surface strained-SOIs strongly depend on the drain current flow direction, which is qualitatively explained by the anisotropic effective mass characteristics of the carriers on a [110]-surface Si. As a result, the [110]-surface strained-SOI technology with optimization of the current flow directions of n- and p-MOS is promising for realizing higher speed scaled CMOS.  相似文献   

10.
Chemical-mechanical-polishing (CMP) was used to smooth the surface of a SiGe substrate, on which strained-Si n- and p-MOSFETs were fabricated. By applying CMP after growing the SiGe buffer layer, the surface roughness was considerably reduced, namely, to 0.4 nm (rms). A strained-Si layer was then successfully grown on the CMP-treated SiGe substrate. The fabricated strained-Si MOSFETs showed good turn-off characteristics, (i.e., equivalent to those of Si control devices). Moreover, capacitance-voltage (CV) measurements revealed that the quality of the gate oxide of the strained-Si devices was the same as that of the Si control devices. Flat-band and threshold voltages of the strained-Si devices were different from those of the Si control devices mainly due to band discontinuity. Electron and hole mobilities of strained-Si MOSFETs under a vertical field up to 1.5 MV/cm increased by 120% and 42%, respectively, compared to the universal mobility. Furthermore, current drive of the n- and p-MOSFETs (L/sub eff//spl ges/0.3 /spl mu/m) was increased roughly by 70% and 50%, respectively. These improvements in characteristics indicate that CMP of the SiGe substrate is a critical technique for developing high-performance strained-Si CMOS.  相似文献   

11.
刘永光 《微电子学》1996,26(3):143-145
采用SIMOX材料,研制了一种全耗尽CMOS/SOI模拟开关电路,研究了全耗尽SOI MOS场效应晶体管的阈值电压与背栅偏置的依赖关系,对漏源击穿的Snapback特性进行分析,介绍了薄层CMOS/SIMOX制作工艺,给出了全耗尽CMOS/SOI电路的测试结果。  相似文献   

12.
Hole transport is studied in ultrathin body (UTB) MOSFETs in strained-Si directly on insulator (SSDOI) with a Si thickness down to 1.4 nm. In these Ge-free SSDOI substrates, the Si is strained in biaxial tension with strain levels equivalent to strained-Si on relaxed SiGe, with Ge contents of 30 and 40% Ge. The hole mobility in SSDOI decreases slowly for Si thicknesses above 4 nm, but drops rapidly below that thickness. Relative to silicon-on-insulator control devices of equal thickness, SSDOI displays significant hole mobility enhancement for Si film thicknesses above 3.5 nm. Peak hole mobility is improved by 25% for 40% SSDOI relative to 30% SSDOI fabricated by the same method, demonstrating the benefits of strain engineering for 3.1-nm-thick UTB MOSFETs.  相似文献   

13.
Extremely thin-film SOI MOSFET's with silicon film thickness down to 8 nm have been fabricated without inducing serious source/drain series resistance by employing a gate recessed structure. The influence of extremely thin silicon film on the electron mobility has been experimentally studied. The results show an abrupt mobility decrease in the device with less than 10 nm silicon film thickness. The measured mobility versus effective field below 10 nm silicon film thickness shows that a different scattering mechanism is involved in carrier conduction in 10 nm tsi region. The reasons for the mobility decrease have been examined from a device simulation and measurements  相似文献   

14.
The mobility and subthreshold characteristics of TiN-gate, dual-channel heterostructure MOSFETs consisting of strained-Si-Si/sub 0.4/Ge/sub 0.6/ on relaxed Si/sub 0.7/Ge/sub 0.3/ are studied for strained-Si cap layer thicknesses ranging from 3 to 10 nm. The thinnest Si cap sample (3 nm) yields the lowest subthreshold swing (80 mV/dec) and the highest hole mobility enhancement (2.3X at a vertical effective field of 1 MV/cm). N-MOSFETs show the expected electron mobility enhancement (1.8X) for 10- and 5-nm-thick Si cap samples, which reduces to 1.6X for an Si cap thickness of 3 nm. For Si cap and gate oxide thicknesses both equal to 1 nm, simulations predict a moderate degradation in p-MOSFET subthreshold swing, from 73 to 85 mV/dec, compared to that for the Si control.  相似文献   

15.
High-mobility strained-Si PMOSFET's   总被引:1,自引:0,他引:1  
Operation and fabrication of a new high channel mobility strained-Si PMOSFET are presented. The growth of high-quality strained Si layer on completely relaxed, step-graded, SiGe buffer layer is demonstrated by gas source MBE. The strained-Si layer is characterized by double crystal X-ray diffraction, photoluminescence, and transmission electron microscopy. The operation of a PMOSFET is shown by device simulation and experiment. The high-mobility strained-Si PMOSFET is fabricated on strained-Si, which is grown epitaxially on a completely relaxed step-graded Si0.82Ge0.18 buffer layer on Si(100) substrate. At high vertical fields (high |Vg|), the channel mobility of the strained-Si device is found to be 40% and 200% higher at 300 K and 77 K, respectively, compared to those of the bulk Si device. In the case of the strained-Si device, degradation of channel mobility due to Si/SiO2 interface scattering is found to be more pronounced compared to that of the bulk Si device. Carrier confinement at the type-II strained-Si/SiGe-buffer interface is clearly demonstrated from device transconductance and C-V measurements at 300 K and 77 K  相似文献   

16.
The effects of post-oxygen-implant annealing temperature on the characteristics of MOSFET's in oxygen-implanted silicon-on-insulator (SOI) substrates are studied. The results show significant improvements in the electron and hole mobilities near the silicon/buried-oxide interface and in the electron mobility of the front-gate n-channel transistors in SOI substrates with higher post-oxygen-implant annealing temperature. The improvements in the transistor characteristics hence are attributed to the annihilation of oxygen precipitates and the reduction of defect density in the residual silicon film. By comparing the ring oscillators fabricated in SOI substrates annealed at 1150°C and 1250°C after oxygen implantation, a speed improvement of 15 percent is observed in substrates annealed at higher temperature.  相似文献   

17.
We demonstrate electron mobility enhancement in strained-Si n-MOSFETs fabricated on relaxed Si1-xGex-on-insulator (SGOI) substrates with a high Ge content of 25%. The substrates were fabricated by wafer bonding and etch-back utilizing a 20% Ge layer as an etch stop. Epitaxial regrowth was used to produce the upper portion of the Si0.75Ge0.26 and the surface strained Si layer. Large-area strained-Si n-MOSFETs were fabricated on this SGOI substrate. The measured electron mobility shows significant enhancement over both the universal mobility and that of co-processed bulk-Si MOSFETs. This SGOI process has a low thermal budget and thus is compatible with a wide range of Ge contents in Si1-xGex layer  相似文献   

18.
In the ultra-thin relaxed SiGe virtual substrates, a strained-Si channel p-type Metal Oxide Semiconductor Field Effect Transistor (p-MOSFET) is presented. Built on strained-Si/240nm relaxed-Si0.8 Ge0.2/ 100nm Low Temperature Si (LT-Si)/10nm S i buffer was grown by Molecular Beam Epitaxy (MBE), in which LT-Si layer is used to release stress of the SiGe layer and made it relaxed. Measurement indicates that the strained-Si p-MOSFET's (L=4.2μm) transconductance and the hole mobility are enhanced 30% and 50% respectively, compared with that of conventional bulk-Si. The maximum hole mobility for strained-Si device is 140cm^2/Vs. The device performance is comparable to devices achieved on several μm thick composition graded buffers and relaxed-SiGe layer virtual substrates.  相似文献   

19.
The bandgap engineering method using a SiGe source structure is presented as a means to suppress the floating-body effect in SOI MOSFET's. Experiments using Ge implantation are carried out to form a narrow-bandgapped SiGe layer in the source region. It has been confirmed that Ge-implanted SIMOX exhibited a 0.1 eV bandgap narrowing with a relatively low Ge-dosage of 1016 cm-2. The fabricated N-type SOI-MOSFET's exhibited suppressed parasitic bipolar effects, such as improvement of the drain breakdown voltage or latch voltage, and suppression of abnormal subthreshold slope. Advantages over other conventional methods are also discussed, indicating that the bandgap engineering provides a practical method to suppress the floating-body effect  相似文献   

20.
A technique is developed to measure silicon-on-insulator (SOI) silicon device film thickness using a MOSFET. The method is based on CV measurements between gate and source/drain at two different back-gate voltages. The SOI devices used in this study were n+ polysilicon gate n-channel MOSFETs fabricated with modified submicrometer CMOS technology on SIMOX (separation by implanted oxygen) wafers. The SIMOX wafers were implanted with a high dose of oxygen ions (1018 cm-2) at 200 keV and subsequently annealed at 1230°C. The NMOS threshold boron implant dose is 2×1012 cm-2. This method is simple, nondestructive, and no special test structure is needed. Using this technique, SOI film thickness mapping was made on a finished wafer and a thickness variation of ±150 Å was found  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号