首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
电容器铝箔交流腐蚀过程中腐蚀膜形成条件分析   总被引:3,自引:2,他引:1  
交流电解腐蚀扩面技术是低压铝电解电容器小型化的关键。分析了电极铝箔在盐酸溶液中交流负半周液相传质过程及交流电频率对电极表面几何结构的影响,结果表明,如果本体盐酸浓度c0,外加阴极电流密度iappl和交流电的频率f满足:{c0}mol·L-1/{iappl}A·cm-2≤587{f}Hz·({f}Hz+10.4)-2,则Al3+就可能沉淀形成腐蚀膜。控制盐酸浓度,阴极电流密度和交流电频率可改善腐蚀膜品质。  相似文献   

2.
GaAs衬底层选择性腐蚀技术   总被引:2,自引:1,他引:1  
本文在GaAsGaAlAs选择性腐蚀的基础上进行了腐蚀GaAs衬底层获得GaA/GaAlAs外延层薄膜的二次腐蚀技术。最终选用了C3H4(OH)(COOH)3.H2O-H2O2系选择性腐蚀液和H2SO4-H2O2系腐蚀液,获得了快速,可控制,重复性好的可全部可局部去除衬底的腐蚀方法。  相似文献   

3.
GaAs、GaP、InP、InGaAsP、AlGaAs、InAlGaAs的化学腐蚀研究   总被引:2,自引:0,他引:2  
为研制全集成光开关、微片式激光器等,对GaAs、GaP、InGaAsP、InAIGaAs、AlGaAs等材料的化学腐蚀进行了实验研究。为了研制InAlGaAs/InAlAs/InAlGaAs微片式激光器,开发了H3PO4/H2O2/H2O薄层腐蚀液和HCl/H2O选择性腐蚀液;为了研制InGaAsP/InP/InGaAsPTbar型光波导,开发了HCl/H3PO4/H2O2薄层腐蚀液和HCl/H2O2选择性腐蚀液;为了研制GaP、InGaP光波导,开发了HCl/HNO3/H2O薄层腐蚀液。它们都具有稳定、重复性好、速率可控、腐蚀后表面形貌好等特点。除此之外,蚀刻成的GaP光波导侧壁平滑无波纹起伏。此种结果尚未见报导。  相似文献   

4.
本文论述了退火温度对铝箔微观结构的影响;并通过对低压软、硬箔电化学腐蚀试验结果的分析,讨论了腐蚀液的组成和浓度、腐蚀电流密度及退火温度对铝箔腐蚀系数的影响;探讨了提高铝箔腐蚀系数的途径。  相似文献   

5.
采用X射线衍射、X射线双晶衍射和X射线荧光三种手段对经H2SO4:H2O2:H2O=16:1:1和3:1:1腐蚀液,在不腐蚀条件下得到的GaAs片子进行近表层结晶完整性、片子表面的残留产物以及发射二次X射线情况测量,并初步分析了这些数据。  相似文献   

6.
低压铝箔矩形波交流电预处理探析   总被引:1,自引:1,他引:0  
在低酸度电解液中对高纯低压电子铝箔采用低频矩形波交流电的预处理工艺,产生较为均匀的初期蚀孔,使得后段腐蚀过程铝箔表面溶解减少,海绵层厚度增加,比电容量提高。具体分析了预处理矩形波交流电电流频率f、电流密度J、处理时间t、处理温度θ以及cAl3+/ cH+值对比电容量C的影响。  相似文献   

7.
本文研究了直流等离子体CVD法制备C-BN薄膜。在衬底温度850℃和放电电流密度4A/cm^2条件下,c-BN膜生长速率可达10μm/h反应气体是B2H6+NH3+H2,并且工作压强为13-26kPa。  相似文献   

8.
Ar离子激光增强硅各向异性腐蚀速率的研究   总被引:7,自引:0,他引:7  
温殿忠 《中国激光》1995,22(3):202-204
研究了Ar离子激光器与硅各向异性腐蚀技术相结合制造硅杯的方法。结果表明,激光照射能增强浸于KOH溶液中硅的化学腐蚀速率,在入射光强为4.6W,KOH溶液浓度为0.22mol,温度为90℃的条件下,得到<100>硅的腐蚀速率为21μm/min,是无激光照射时硅各向异性腐蚀速率的多倍。进而讨论了硅在KOH溶液中腐蚀速率对激光光强的依赖关系以及实验温度对腐蚀速率的影响问题。  相似文献   

9.
用光致荧光谱、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)对用阳极氧化法制成的多孔硅层在1%NH3/H2O2溶液中的腐蚀现象进行了研究。红外分析表明,Si-O键和H-O键的强度随NH3/H2O2溶液的腐蚀时间的增加而增加,Si-H键强主匠随腐蚀时间增加而减少。光致荧光谱的峰值在腐蚀开始时先下降后上升,半高宽变窄,谱峰的以边明显蓝移。分析研究表明,1%NH3/H2O2溶液对多孔硅层有腐蚀  相似文献   

10.
半导体泵浦的GdVO_4∶Nd~(3+)晶体激光器引言使用半导体激光器对晶体进行纵向泵浦,可大幅度地提高固体激光器效率和激光幅度与频率的稳定性。然而传统的固体工作物质YAG:Nd3+只有在使用较小功率的单模半导体激光器,并将其频率通过温度调谐到YAG:...  相似文献   

11.
在酸性介质中已经产生隧道孔的铝箔表面,继续在中性电解液中采取直流阳极溶解时,隧道孔密度及长度与二次侵蚀时电解质类别相关。在此基础上,通过二次侵蚀前铝箔表面的酸浸泡成膜处理,以及二次侵蚀过程中在中性氯化钠介质中添加复合有机物,达到控制此过程中隧道孔生长方向的目的,使其在原隧道孔的孔壁沿着与铝箔表面平行的方向产生新的隧道孔,这为提高铝箔表面积提出了新的途径,为进一步提高铝电解电容器比容提供了可能性。  相似文献   

12.
电解电容器用铝箔腐蚀工艺研究   总被引:2,自引:1,他引:1  
采用正交实验方法,选择腐蚀溶液的组成、腐蚀电压、腐蚀温度和时间四因素,探索影响环保型铝电解电容器用腐蚀箔性能的工艺参数。结果表明:当ψ(H2SO4∶HCl)为3∶1,电压为8V,温度为85℃,腐蚀时间85s时,可以获得高比容(0.59)高强度(弯折次数140)兼顾的性能。腐蚀溶液的组成、电压是影响腐蚀箔性能的主要因素。  相似文献   

13.
恒定电流下在酸碱预处理后的铝箔表面电沉积微量Zn,得到电沉积改性预处理铝箔,对其进行直流电化学腐蚀。使用EDS能谱分析电沉积Zn铝箔表面元素;利用金相显微镜与扫描电镜从断面、表面观察样品铝箔腐蚀形貌;利用极化曲线、失重率、减薄率观测样品铝箔的腐蚀电位、腐蚀效果,研究不同预处理工艺对高压阳极铝箔电解腐蚀行为的影响。结果表明:电沉积Zn预处理后,由于沉积在铝箔表面的Zn和Al存在电位差,形成Al-Zn微电池促进铝箔腐蚀发孔,其腐蚀电位由酸碱预处理铝箔的-0.83 V下降到-0.87 V,铝箔腐蚀后隧道孔数量较多,分布更加均匀,减薄率下降,失重率上升,得到了比表面积更大的铝电解电容器用阳极腐蚀箔。  相似文献   

14.
电极布置对电容器铝箔失重和比容均匀性的影响   总被引:1,自引:1,他引:0  
研究了HCl中50 Hz交流电侵蚀下,电解槽电极布置对电解电容器用高纯铝箔的侵蚀均匀性的影响。结果表明, 随电解槽导电石墨电极浸入深度的增加,侵蚀铝箔的失重和比容趋于不均匀分布。随铝箔电解槽石墨间距增大, 侵蚀铝箔的失重和比容趋于均匀分布。直接通电侵蚀铝箔的失重和比容分布均匀性优于铝箔电场通电, 在理论上分析了原因。  相似文献   

15.
低压铝箔交流腐蚀工艺研究   总被引:3,自引:2,他引:1  
考察了电解电容器用高纯铝箔在HCl-H2SO4-H3PO4混合酸体系中的交流腐蚀过程,综合配方和工艺两方面主要因素研究铝箔的交流扩面行为。结合SEM形貌分析,重点考察了前级电流密度、后级电流密度及腐蚀电量等对铝箔比容的影响,确定了最佳的低压铝箔交流腐蚀工艺,在2V化成,Cs达76×10–6F/cm2。  相似文献   

16.
阳极铝箔交流腐蚀发孔对比容的影响   总被引:2,自引:0,他引:2  
采用50Hz交流电腐蚀发孔和进一步腐蚀阳极铝箔,在腐蚀箔表面形成透明钝化型腐蚀膜且蚀孔孔径较大。在交流电腐蚀过程中不产生发黑、掉粉和减薄现象。另外,该工艺对盐酸浓度和硫酸添加剂浓度的适应范围很宽。  相似文献   

17.
对低压铝箔施加五种不同波形交流电,研究了不同交流电波形对低压铝箔腐蚀形貌及电性能的影响。结果表明:正弦波、三角波电流变化率较小,孔大而浅,不易产生并孔;而方波、梯形波电流均有一段平稳不变期,易产生并孔;变形正弦波一个周期存在四个峰值电流,发孔几率比正弦波要大,也易出现并孔。实验表明如果在不同腐蚀阶段选择适当的波形和频率,会使电子铝箔的性能指标有较大提高。  相似文献   

18.
中高压电容器铝箔扩孔液中缓蚀剂的作用   总被引:4,自引:3,他引:1  
研究高纯铝箔在盐酸直流电侵蚀时高分子缓蚀剂对隧道蚀孔密度和侵蚀箔比电容的影响,扩孔使用缓蚀剂后,孔密度增加,孔径减小,失重减少,中高压电容器铝箔的比电容约提高23%。  相似文献   

19.
Fe在高纯铝中的存在状态(固溶状态或Al3Fe,AlFeSi金属间化合物析出状态)直接影响铝在盐酸溶液中的腐蚀速度,从而对腐蚀箔的静电容量有极大影响。介绍了近年来日本专利中关于防止Fe、Si析出的轧箔工艺,即高温固溶处理后在数分钟内完成热轧,使Fe、Si来不及析出,这样,99.98%Al就其Fe、Si析出量而言,实际可达到99.99%以上铝的水平。更进一步,控制Fe、Si析出分布状态(弥散状分布)的轧箔工艺,有可能用99.93%~99.98%铝得到99.98%以上纯度铝同样静电容量水平。  相似文献   

20.
低压铝箔腐蚀的碱洗工艺   总被引:1,自引:0,他引:1  
对国产高纯Al箔在电化学腐蚀扩面前进行碱洗是必要的。采用恰当的碱洗工艺,可以提高腐蚀Al箔的静电比容约10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号