首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Materials Science: Materials in Electronics - Spray pyrolysis was used to deposit CeO2–TiO2 coatings on stainless steel substrates. The addition of CeO2 to TiO2 changes morphology...  相似文献   

2.
Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (P(O)(OH)2). Strong covalent CP bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (OH, CO, C(O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.  相似文献   

3.
Ni–B coatings are extremely hard and wear resistant with decent anticorrosion properties which make them suitable for automotive, aerospace, petrochemical, plastic, optics, nuclear, electronics, computer, textile, paper, food and printing industries. However, further improvement in properties is essential to address more challenging requirements and new developments. In the present study, Ni–B and novel Ni–B–CeO2 composite coatings were electrodeposited (ED) on mild steel substrates using dimethylamine borane (DMAB) as a reducing agent. A comparison of properties of Ni–B and Ni–B–CeO2 coatings is presented to elucidate the useful role of CeO2 addition. The structural analyses indicate that Ni–B coatings are amorphous in their as deposited state. However, addition of CeO2 into Ni–B matrix considerably improves the crystallinity of the deposit. The surface morphology study reveals the formation of uniform, dense and fine-grained deposit in both Ni–B and Ni–B–CeO2 composite coatings. However, Ni–B–CeO2 composite coatings exhibit high surface roughness. The nano mechanical properties show that the addition of CeO2 particles into Ni–B matrix results in remarkable improvement in mechanical properties (hardness and modulus of elasticity) which may be attributed to dispersion hardening of Ni–B matrix by CeO2 particles. The electrochemical polarization tests confirm that the addition of CeO2 improves the corrosion resistance of Ni–B coatings. This improvement in corrosion behavior may be ascribed to the reduction in active area of Ni–B coatings by the presence of inactive CeO2 particles into Ni–B matrix.  相似文献   

4.
In this work, a porous and homogeneous titanium dioxide layer was grown on commercially pure titanium substrate using a micro-arc oxidation (MAO) process and Ca–P-based electrolyte. The structure and morphology of the TiO2 coatings were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and profilometry. The chemical properties were studied using electron dispersive X-ray spectroscopy (SEM–EDS) and X-ray photoelectron spectroscopy. The wettability of the coating was evaluated using contact angle measurements. During the MAO process, Ca and P ions were incorporated into the oxide layer. The TiO2 coating was composed of a mixture of crystalline and amorphous structures. The crystalline part of the sample consisted of a major anatase phase and a minor rutile phase. A cross-sectional image of the coating–substrate interface reveals the presence of voids elongated along the interface. An osteoblast culture was performed to verify the cytocompatibility of the anodized surface. The results of the cytotoxicity tests show satisfactory cell viability of the titanium dioxide films produced in this study.  相似文献   

5.
In our previous study we attempted to see the effect of cerium doping (Ce/Fe ratio 0.015 to 0.074) on goethite matrix and conversion of doped goethite to hematite. In the present communication, nano-structured α-Fe2O3–CeO2 composite with Fe/Ce weight ratio as 1.1 has been synthesized by calcination of goethite-cerium hydroxide precursor prepared by co-precipitation method. It was observed that co-precipitation of cerium along with iron in hydroxide medium resulted in hindering the formation of crystalline order as the precursor formed showed poorly crystallized goethite and almost no crystallinity in Ce(OH)4. Calcination of the precursor at 400 °C showed the formation of hematite together with a broad peak corresponding to cerium oxide whereas at 800 °C, two distinct phases of α-Fe2O3 and CeO2 were observed. The Mössbauer spectra showed the presence of a paramagnetic component both for the precursor as well as for the sample calcined at 400 °C but on raising the calcination temperature to 800 °C, the paramagnetic component disappeared and the spectrum corresponding to pure α-Fe2O3 phase was observed. The microstructure of the product obtained by calcining at 800 °C showed rod like structure (30 to 50 nm width and 300 to 500 nm length) of α-Fe2O3 having equi-dimensional CeO2 particles on and around the surface. Besides the rods, equi-dimensional particles and agglomerates corresponding to CeO2 were also observed. The results show that co-precipitation followed by calcinations gives nanorods hematite with CeO2 particles bonded to its surface.  相似文献   

6.
High corrosion rate and accumulation of hydrogen gas upon degradation impede magnesium alloys’ clinical application as implants. In this work, micro-arc oxidation (MAO) was used to fabricate a porous coating on magnesium alloys as an intermediate layer to enhance the bonding strength of propolis layer. Then the composite coatings were fabricated using sol–gel method by dipping sample into the solution containing propolis and polylactic acid at 40°C. The corrosion resistance of the samples was determined based on potentiodynamic polarization experiments and immersion tests. Biocompatibility was designed by observing the attachment and growth of wharton’s jelly-derived mesenchymal stem cells (WJCs) on substrates with MAO coating and substrates with composite coatings. The results showed that, compared with that of Mg–Zn–Ca alloy, the corrosion current density of the samples with composite coatings decreased from 5.37 × 10−5 to 1.10 × 10−6 A/cm2 and the corrosion potential increased by 240 mV. Composite coatings exhibit homogeneous corrosion behavior and can promote WJCs cell adhesion and proliferation. In the meantime, pH value was relatively stable during the immersion tests, which may be significant for cellular survival. In conclusion, our results indicate that composite coatings on Mg–Zn–Ca alloy fabricated by MAO/sol–gel method provide a new type bioactive material.  相似文献   

7.
8.
Surface properties and corrosion resistance analyses of Ti–13Nb–13Zr coated by an oxide film (obtained by micro-arc oxidation at 300 V) or an oxide/hydroxyapatite (HA) film are reported. HA films were biomimetically or electrochemically deposited on the alloy/oxide surface, and their properties compared. Both the biomimetic and the electrochemical method yielded rough and globular apatite surfaces (10–20 μm globules for the former and 1–2 μm for the latter). As inferred from XRD data, the electrochemical method yielded more biologic-like HA films, while the biomimetic method yielded films containing a mixture of calcium phosphate phases. Coated Ti–13Nb–13Zr samples were immersed in an aerated PBS solution and continuously analyzed during 49 days. Considering that, after immersion, the biomimetically deposited films presented smaller variations in thickness and morphology and higher electric resistance (determined by electrochemical impedance spectroscopy), they clearly provide significantly better protection to the Ti–13Nb–13Zr alloy when in PBS solution.  相似文献   

9.
Ni matrix–Al particle composite coating was adopted via sediment co-deposition (SCD) method on the zincate coated aluminum substrate. Surface morphology was investigated by scanning electron microscopy (SEM). The electrochemical behavior of the coatings was studied by polarization potentiodynamic test in 3.5 wt.% sodium chloride using a three electrode open cell. The effect of the electroplating parameters on the Al co-deposition was studied. Maximum of 22 wt.% Al particles were deposited in the coating. It was found that the zincate coating plays an important role in improving the nickel layer adherent. Furthermore, incorporation of aluminum particles in Ni matrix refined the Ni crystal coatings. However, polarization curves shifted to negative potentials and corrosion rate is decreased.  相似文献   

10.
Journal of Materials Science: Materials in Electronics - In this study, CuCrO2–CeO2 nanofibers were prepared by the electrospinning method and the influences of different concentrations on...  相似文献   

11.
Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn–Ag composite coatings. The Zn–Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, 1 and 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanoparticles, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn–Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn–Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits.  相似文献   

12.
The Dynamic Chemical Plating (DCP) technique allows production of 2-μm copper films containing particles of graphite or PTFE in 18 and 15 min, respectively, at ambient temperature. DCP yields composites with particle-incorporation fractions of 12% for graphite micro-particles and 22% for PTFE nano-particles. The composite films show excellent tribological properties, acting as self-lubricating coatings with friction coefficients as low as 0.18.  相似文献   

13.
Zirconia/Hydroxyapatite composites containing 20–50 wt.% 8YSZ were prepared on Ti/TiO2 substrates by electrophoretic deposition (EPD)/micro-arc oxidation (MAO) process. Titania, as an inner layer, was grown on the Ti plates using MAO treatment in order to form a strong join between substrate and HAp. These composites were produced by EPD in ethanol containing ZrO2/HAp particles at 50, 100 and 150 V in 1 min. As-prepared samples were sintered at 900, 1100 and 1300 °C. HAp, β-TCP, CaZrO3 phases were identified using X-ray diffractometry analysis (XRD). Scanning electron microscopy (SEM) utilized to study the surface morphology indicated a crack free microstructure at 1300 °C.  相似文献   

14.
Chromate coatings on Zn or Zn alloy coated steel sheets often include silica for the aim to improve corrosion resistance. In the case of dry-in-place chromate coatings containing acrylic resin (hereafter referred to as an organic–inorganic composite coating), an addition of silica, however, did not show an improvement in corrosion resistance. The microstructures of the organic–inorganic composite coatings were observed by transmission electron microscopy (TEM) and the chemical states of Cr were investigated by the total electron yield X-ray absorption near edge structure (TEY-XANES) method. TEM samples were successfully prepared by dry ultramicrotomy preventing water-soluble components in the coatings from dissolving out. TEY-XANES revealed the chemical states of components even in the organic matrix. Using these methods, it was found that the addition of silica changed just the morphology of the chromium compound in the organic–inorganic composite coating but not the chemical state of Cr. This is a reason for the addition of silica being not effective at improving corrosion resistance. The combination of dry ultramicrotomy-TEM and TEY-XANES spectroscopy was proven to be a powerful tool for characterizing organic–inorganic composite coatings.  相似文献   

15.
Chromate coatings on Zn or Zn alloy coated steel sheets often include silica for the aim to improve corrosion resistance. In the case of dry-in-place chromate coatings containing acrylic resin (hereafter referred to as an organic–inorganic composite coating), an addition of silica, however, did not show an improvement in corrosion resistance. The microstructures of the organic–inorganic composite coatings were observed by transmission electron microscopy (TEM) and the chemical states of Cr were investigated by the total electron yield X-ray absorption near edge structure (TEY-XANES) method. TEM samples were successfully prepared by dry ultramicrotomy preventing water-soluble components in the coatings fromdissolving out. TEY-XANES revealed the chemical states of components even in the organic matrix. Using these methods, it was found that the addition of silica changed just the morphology of the chromium compound in the organic–inorganic composite coating but not the chemical state of Cr. This is a reason for the addition of silica being not effective at improving corrosion resistance. The combination of dry ultramicrotomy-TEM and TEY-XANES spectroscopy was proven to be a powerful tool for characterizing organic–inorganic composite coatings.  相似文献   

16.
The influence of micro-arc oxidation (MAO) process on the fatigue properties of Ti–6Al–7Nb and commercially pure Ti (CP-Ti) was investigated. Polished and anodized specimens of both materials were tested in axial fatigue to obtain S–N curves and the oxide layer was characterized to support the comparison among the fatigue properties resulting from the different surface conditions. The MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; oxide films consisted of anatase TiO2 and were free of Al or any other alloying elements. These morphology, structure and composition are desirable on the surface coating for favoring the implantation by increasing the bonding characteristics between the implant and the bone. Fatigue behavior was not modified by the MAO process in both Ti–6Al–7Nb and CP-Ti when compared to the samples without surface modification. The nano-thickness and double-layer structure of the oxide formed on the MAO process, with an inner compact structure free of defects, as well as the surface compressive residual stresses typically produced by the anatase phase, ascribe the unaffected fatigue performance, rendering the materials in this condition suitable characteristics in designing orthopedic implants.  相似文献   

17.
Ultraviolet absorbing CeO2–TiO2 coatings were prepared by the sol–gel spin-coating process heat treated at 500 °C. The films obtained were brilliant yellow, adherent and had some pattern on the soda-lime glass substrate. The optical transmittance, thickness and hardness of the films as a function of the number of coatings, aging time (0, 24, 48, 96 h) or aging temperature (28, 35, 40, 50 °C) were determined, and surface microstructure of the films was observed by SEM. We found some pattern on the surface of films. This pattern was similar to that of the stage for fixing the substrate. The pattern on the surface of films would be caused by the difference of thermal conductivity to slide glass in the part of metal of the stage and hollow part of the stage.  相似文献   

18.
In this investigation, a high power diode laser (HPDL) was used to induce the microstructural refinement on the surface of a SiC particulate (SiCp) reinforced Al-based metal matrix composite (A380/SiC/20p) and, at the same time, to the sintering of a sol–gel ceramic layer deposited on the surface of the mentioned substrate. The purely inorganic silica ceramic coating was synthesised through the organic sol–gel route, using tetraethoxysilane (TEOS) as alkoxide precursor and the dip-coating as the deposition technique on the surface of the A380/SiC/20p composite. Optimisation of the laser parameters led to homogeneous and free of cracking coatings and also to the refinement of the surface microstructure of the substrate by means of the dissolution of the intermetallic precipitates, the decrease in the aluminium dendrites size and a better distribution of the silicon carbide particles. Unlubricated pin-on-disc wear tests confirmed the increase (89% in terms of specific wear rate drop) in the wear resistance of the coated substrates treated by the HPDL.  相似文献   

19.
Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.  相似文献   

20.
In this paper, WC–Al composite coatings of AZ91 alloy prepared by mechanical alloying have been investigated in detail. It was found that the premixing process of composite powders has no significant effect in promoting the formation of uniform coating of WC–Al powders. Under the optimised conditions, i.e. the composition of composite powders of (10 g WC–6·5 g Al–3 g AZ91–0·5 g Mg), ball-to-powder weight ratio of 14∶1 and milling duration of 12 h, the average thickness of composite coating can be remarkably increased to 38·01 μm. Compared with the bare substrate, the Brinell hardness of the specimen with WC–Al composite coating can be significantly increased by about 90·01%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号