首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Magnesium alloys based on Nd and Zn are promising materials for both aviation industry and medical applications.Superior mechanical properties of these materials can be achieved by thermomechanical processing such as extrusion or rolling and by aging treatment, which can significantly strengthen the alloy. The question remains especially about the connection of texture strength created in the alloys based on the specific conditions of preparation. This work focuses on the Mg–3 Nd–0.5 Zn magnesium alloy prepared by hot extrusion of the as-cast state at two different temperatures combined with heat pre-treatment. Extrusion ratio of 16 and rate of 0.2 mm/s at 350 and 400 °C were selected for material preparation. The structures of prepared materials were studied by scanning electron microscopy and transmission electron microscopy. The effect of microstructure on mechanical properties was evaluated. Obtained results revealed the strong effect of thermal pre-treatment on final microstructure and mechanical properties of extruded materials. The Hall–Petch relation between grain size and tensile yield strength has been suggested in this paper based on the literature review and presented data. The observed behavior strongly supports the fact that the Hall–Petch of extruded Mg–3Nd–0.5 Zn alloys with different texture intensities cannot be clearly estimated and predicted. In addition, Hall–Petch relations presented in literature can be sufficiently obtained only for fraction of the Mg–3Nd–0.5 Zn alloys.  相似文献   

2.
The effect of Nd addition and the in?uence of extrusion processes on the microstructure and mechanical properties of Mg–6Zn–0.5Zr(ZK60) and Mg–6Zn–1.5Nd–0.5Zr(ZKNd602) alloys were investigated. Nd element can obviously re?ne the microstructure of both as-cast and asextruded Mg–Zn–Nd–Zr alloy. All of the extruded alloys exhibit a bimodal grain structure composed of equiaxed?ne recrystallized(DRXed) grains and elongated coarse un DRXed grains. It is necessary to achieve high strength,particularly the yield strength, for ZKNd602 alloy, when it is extruded with a lower extrusion temperature, a suitable extrusion ratio and a relatively lower extrusion ram speed. In this study, the ultimate tensile strength(UTS),yield strength(YS) and elongation(El) of the extruded ZKNd602 alloy were 421 MPa, 402 MPa and 6.7 %,respectively, with extrusion temperature of 290 °C, extrusion ratio of 18:1 and a ram speed of approximate0.4 mm·s~(-1). Meanwhile, the extrusion process has obvious effects on the room-temperature properties but weak effects on the high-temperature properties.  相似文献   

3.
A new kind of Mg–2 Zn–0.6 Ca(wt%) alloy was fabricated by casting and hot extrusion as a high-ductility structural material. The extruded alloy exhibits a superior elongation of ~30%, yield strength of 130 MPa and ultimate tensile strength of 280 MPa along the extrusion direction at room temperature. Microstructure, texture and tensile properties of the extruded alloy were investigated in details. The remarkable improvement of ductility is ascribed to the weakened basal texture, refined grains and a small number of second phase in the alloy.  相似文献   

4.
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.  相似文献   

5.
Mg–9Li–3Al–1.6Y alloys were prepared through mixture method. The microstructure, mechanical properties, and corrosion resistance of the as-cast and asextruded alloys were studied by optical microscopy(OM),scanning electronic microscopy(SEM), X-ray diffraction(XRD), mechanical properties testing, and electrochemical measurement. The as-cast Mg–9Li–3Al–1.6Y alloy with the average grain size of 325 lm is composed of b-Li matrix, block a-Mg, and granule Al_2Y phases. After extrusion, the grain size of the as-cast alloy is obviously refined and reaches to 75 lm; the strength and elongation of the extruded alloy are enhanced by 17.20 % and49.45 %, respectively, owing to their fine microstructure and reduction of casting defects. The as-extruded alloy shows better corrosion resistance compared to the as-cast one, which may be related to the low stored energy and dislocation density in the extruded alloy, also the homogenization treatment before extrusion.  相似文献   

6.
The Mg–8Sn–4Zn–2Al(TZA842, in wt%) alloys with different initial microstructure(as-cast-AC and homogenization treatment-HT) subjected to hot extrusion. Also, the strengthening responses to AC and HT for the extruded TZA842 alloys were reported. The results revealed that the alloy subjected to HT shows finer grain size, more homogenous microstructure and weaker basal texture than those of counterpart subjected to AC. In addition, compared with TZA842-AC alloy, precipitates were finer and uniformly dispersed in TZA842-HT owing to the utilization of HT. Moreover, the TZA842-HT alloy showed higher yield strength of 200 MPa, ultimate tensile strength of 290 MPa and elongation(EL) of17.9% than those of TZA842-AC, which was mainly attributed to the combined effects of grain boundary strengthening,precipitation strengthening, solid solution strengthening and weak texture. Strengthening mechanism for both alloys was discussed in detail.  相似文献   

7.
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning.  相似文献   

8.
The microstructure, mechanical properties and corrosion behavior of Mg–2 Zn–0.6 Zr alloy under the as-cast and asextruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the asextruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2 Zn–0.6 Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.  相似文献   

9.
The Mg–Gd–Y–Zn–Zr alloy sheets with different texture characteristics and distribution of the interdendritic long periodstacking ordered(LPSO) phases were fabricated through altering the final rolling reduction(FRR). The results showed that the texture characteristic was closely related to FRR and affected the tensile properties of the resulted sheets to some extent. The Schmid factor(SF) of the basal 〈a〉 slip improved with further FRR, which was ascribed to that the dynamic recrystallization(DRX) grains expand into the deformed grains with basal texture. However, the improvement of the tensile yield strength(TYS) with further FRR indicates that the strengthening effect from DRX grains surpasses the weakening effect from the elevated SF. The formation of the line-distributed interdendritic 14 H-LPSO phases can also affect the tensile properties of the resulted sheets. The line-distributed interdendritic 14 H-LPSO phases along rolling direction(RD) can act as reinforcing fiber and contribute to the higher TYS along RD and 45° to some extent, which resulted in the higher TYS along 45° compared with that along transverse direction(TD) for each resulted sheet under the circumstance of approximate basal 〈a〉 and pyramid 〈c + a〉 friction stress. Thus, the tensile yield strength is not only related to the texture, but also depends on the grain size and line-distributed interdendritic LPSO phases. The micro-cracks spread perpendicular to the tension direction, and thus, the larger cracks form within the line-distributed 14 H-LPSO phases during tension along TD, which accounts for the lower fracture elongation along TD.  相似文献   

10.
The effects of the rare earth element Y addition on mechanical properties and energy absorption of a low Zn content Mg–Zn–Zr system alloy and the deformation temperature of optimized alloy were investigated by room tensile test, optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscope(TEM). The results show that,after homogenization at 420 °C for 12 h for the as-cast alloys, Mg Zn phase forms, which decreases the strength of Mg–2.0Zn–0.3Zr alloy with Y content of 0.9 wt%. The tensile strength and elongation of the alloy with a Y addition of 5.8 wt% reach the max value(281 ± 2) MPa and(30.1 ± 0.7) %, respectively; the strength and elongation of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reach(321 ± 1) MPa and(21.9 ± 0.7) %, respectively. The energy absorption increases with the increase of Y content, the max value reached 0.79 MJ m-3with Y content of 5.8 wt%, and the energy absorption of Mg–2.0Zn–0.3Zr–0.9Y alloy at the optimized extrusion temperature of 330 °C reaches0.75 MJ m-3.  相似文献   

11.
A new Mg-2.2 wt% Zn alloy containing 1.8 wt% Ca and 0.5 wt% Mn has been developed and subjected to extrusion under different extrusion parameters.The finest(~0.48 μm) recrystallized grain structures,containing both nano-sized MgZn_2 precipitates and α-Mn nanoparticles,were obtained in the alloy extruded at 270℃/0.01 mm s~(-1).In this alloy,the deformed coarse-grain region possessed a much stronger texture intensity(~32.49 mud) relative to the recrystallized fine-grain region(~13.99 mud).A positive work hardening rate in the third stage of work hardening curve was also evident in the alloy extruded at 270℃,which was related to the sharp basal texture and which provided insufficient active slip systems.The high work hardening rate in the fourth stage contributed to the high ductility extruded at 270℃/1 mm s~(-1).This alloy exhibited a weak texture,and the examination of fracture surface revealed highly dimpled surfaces.The optimum tensile strength was achieved in the alloy extruded at 270℃/0.01 mm s~(-1),and the yield strength,ultimate tensile strength and elongation to failure were~364.1 MPa,~394.5 MPa and~7.2%,respectively.Fine grain strengthening from the recrystallized fine-grain region played the greatest role in the strength increment of this alloy compared with Orowan strengthening and dislocation strengthening in the deformed coarse-grain regions.  相似文献   

12.
The solution-treated Mg-4Y-4Sm-0.5Zr alloy was extruded at temperatures from 325℃ to 500℃.Dynamic recrystallization(DRX) completely occurs when the alloy is extruded at 350℃and above.The grains of the extruded alloy are obviously refined by the occurrence of DRX.The average grain size of the extruded alloy increases with increasing the extrusion temperature,leading to a slight decrease of the ultimate tensile strength(UTS) and the yield strength(YS) .On the contrary,the UTS and YS of the extruded and aged alloy increase with increasing the extrusion temperature.Values of UTS of 400 MPa,YS larger than 300 MPa and elongation(EL) of 7%are achieved after extrusion at 400℃ and ageing at 200℃ for 16 h.Both grain refinement and precipitation are efficient strengthening mechanisms for the Mg-4Y-4Sm-0.5Zr alloy.  相似文献   

13.
研究铸态和挤压态Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr合金的显微组织、时效强化和力学性能。铸锭在T4处理后分别于400、450和500°C进行挤压,挤压比为10:1。在细晶强化和析出强化的共同作用下,于400°C挤压的样品经T5处理后可以得到最优的力学性能,所得的晶粒尺寸约为5.0μm,其初始和峰值硬度分别为HV109和HV129。室温下的拉伸屈服强度、抗拉强度和伸长率分别达到391MPa、430MPa和5.2%。  相似文献   

14.
建立一种耦合滑移、动态再结晶以及晶界滑移的晶体塑性模型以仿真镁合金的高温变形行为及织构演化.首先,通过实验测量单轴拉伸、压缩后的织构以及显微组织演化,研究AZ31B镁合金在300°C的变形机制.结果发现,动态再结晶在应变小于0.2时起到细化晶粒的作用,之后晶界滑移在变形过程中起显著作用.此外,建立晶界滑移模型来评估由晶...  相似文献   

15.
Microstructure and biodegradation behavior of as-cast and hot extruded Mg-5Zn-1Y alloy containing different amounts of calcium (0.0%, 0.1%, 0.5%, and 1.0%, mass fraction) were explored. The extrusion process was conducted at three different temperatures of 300, 330, and 370 °C. Chemical composition, phase constitution, microstructure, and biodegradation behavior of the alloys were investigated. The macro- and micro-scopic examination revealed that the addition of Ca refines the grain structure and forms an intermetallic phase, Ca2Mg6Zn3. The hot extrusion process resulted in breaking the intermetallic phases into fine particles routed to the extrusion direction. Moreover, dynamic recrystallization happened in almost all alloys, and more bimodal microstructure was formed in the alloys when the alloys were extruded at 370 °C. Polarization curves showed no passive region, which indicated that active polarization dominated in the alloys; therefore, grain refining through Ca addition and dynamic recrystallization over hot extrusion operation increased biodegradation rate. The results show that the as-cast Mg-5Zn-1Y-0.1Ca alloy provides the highest corrosion resistance, and the extruded Mg-5Zn-1Y-0.5Ca alloy at 300 °C shows the lowest biodegradation rate among the extruded alloys. Therefore, hot extrusion does not always improve the biodegradation behavior of magnesium alloys.  相似文献   

16.
Mg-2Al-1.2Ca-0.2Mn(at%)-based alloys with Ce-rich mischmetal(MM) substitution of 0–0.6 at% for Ca were hot extruded at 400 °C. The effect of MM substitution on the microstructure and mechanical properties of the extruded alloys was investigated. The as-cast Mg-2Al-1.2Ca-0.2Mn alloy is mainly composed of a-Mg, Mg_2Ca and(Mg,Al)_2Ca phases and Al_8Mn_5 precipitates, whereas the substitution of MM brings about the formation of Al_(11)MM_3, Al_2MM phases and Al_(10)MM_2Mn_7 particles with the absence of (Mg,Al)_2Ca phase. The volume fraction of MM-containing phases increases with increasing MM contents. All of the extruded alloys exhibit bimodal microstructure comprising fine dynamically recrystallized grains with almost random orientation and coarse deformed grains with strong basal texture. Dense nanosized planar Al_2Ca and spherical Al–Mn phases precipitate inside the deformed grains. High tensile yield strengths of~ 350 MPa and moderate elongations to failure of 12% are obtained in all extruded alloys; the MM substitution induces negligible difference in the tensile properties at ambient temperature, while the highest MM substitution improves the strength at 180 °C due to the better thermal stability of the fragmented MM-containing phases.  相似文献   

17.
The effects of extrusion and heat treatments on the microstructure and mechanical properties of Mg–8Zn–1Al–0.5Cu– 0.5Mn magnesium alloy were investigated. Bimodal microstructure is formed in this alloy when it is extruded at 230 and 260 °C, and complete DRX occurs at the extruding temperature of 290 °C. The basal texture of as-extruded alloys is reduced gradually with increasing extrusion temperature due to the larger volume fraction of recrystallized structure at higher temperatures. For the alloy extruded at 290 °C, four different heat treatments routes were investigated. After solution + aging treatments, the grains sizes become larger. Finer and far more densely dispersed precipitates are found in the alloy with solution + double-aging treatments compared with alloy with solution + single-aging treatment. Tensile properties are enhanced remarkably by solution + double-aging treatment with the yield strength, tensile strength and elongation being 298 MPa, 348 MPa and 18%, respectively. This is attributed to the combined effects of fine dynamically recrystallized grains and the uniformly distributed finer precipitates.  相似文献   

18.
作为新一代临时生物材料,镁合金具有良好的生物相容性和生物可降解性,也有助于损伤骨组织的修复。但是,其在人体体液中不具备所要求的耐腐蚀性能。挤压等热机械加工对镁合金的力学性能和生物腐蚀行为均有影响。本文综述挤压参数(挤压比和温度)对镁合金生物腐蚀性能的影响。它们的影响主要归因于挤压合金显微组织的改变,包括最终的晶粒尺寸和均匀度、织构以及第二相的尺寸、分布和体积分数。挤压过程中的动态再结晶和晶粒细化使组织更均匀,并导致基面织构的形成,从而提高镁合金的强度和耐腐蚀性能。挤压温度和挤压比是影响降解的重要因素。随着挤压比的增加和/或挤压温度的降低,镁合金的晶粒尺寸减小,与挤压方向平行的样品两侧的基面织构增强,析出相体积分数降低,晶粒尺寸减小,这些都有助于提高镁合金植入物的耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号