首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对传统目标检测算法无法自适应提取目标相应特征并完成识别的现象,提出一种基于快速区域卷积神经网络(Faster R-CNN)模型的电器识别方法,其优势在于可以自适应获取不同场景下目标的特征,避免由于人为设计目标的特征而带来的主观因素影响,具有良好的鲁棒性与准确性。FasterR-CNN中首先通过建立区域建议网络RPN(Region Proposal Network)代替Fast R-CNN中的Selective Search方法,得到建议位置后再进行检测。为了解决训练过程当中正负样本失衡问题,在Faster R-CNN中引入了难负样本挖掘策略,增强了模型的判别能力,提高检测的精度。  相似文献   

2.
针对智能看护机器人在实际生活中对目标的检测速度慢和精度低的问题,提出了一种采用轻量型卷积神经网络模型对目标进行检测的算法.首先利用MobileNets基础网络对采集到的图像信息进行特征提取,然后利用多尺度特征图检测不同尺度的目标,同时引入抑制类别样本不均衡的焦点损失函数使模型更加侧重于对困难样本的训练.实验结果表明,改...  相似文献   

3.
作为计算机视觉中的基本视觉识别问题,目标检测在过去的几十年中得到了广泛地研究。目标检测旨在给定图像中找到具有准确定位的特定对象,并为每个对象分配一个对应的标签。近年来,深度卷积神经网络DCNN(Deep Convolutional Neural Networks)凭借其特征学习和迁移学习的强大能力在图像分类方面取得了一系列突破,在目标检测方面,它越来越受到人们的重视。因此,如何将CNN应用于目标检测并获得更好的性能是一项重要的研究。首先回顾和介绍了几类经典的目标检测算法;然后将深度学习算法的产生过程作为切入点,以系统的方式全面概述了各种目标检测方法;最后针对目标检测和深度学习算法面临的重大挑战,讨论了一些未来的方向,以促进深度学习对目标检测的研究。  相似文献   

4.
针对非结构化的抓取场景,提出一种并列式架构的卷积神经网络检测模型。该模型使用单物体抓取数据集训练,可以对多物体进行抓取检测。基于机器人操作系统(Robot Operating System,ROS)平台进行抓取仿真试验,验证抓取检测结果的有效性。试验结果表明,该方法针对密集多物体的仿真抓取成功率达到80.8%。  相似文献   

5.
针对在传统的道路目标识别中,需要进行手工提取特征,模型的泛化能力差。使用深度学习的技术,提出了使用深度卷积神经网络(SSD)解决道路目标问题。该方法首先对图像特征进行自动提取,在基础网络后添加不同尺寸的特征图,然后对多尺寸的特征图做卷积滤波,得到目标坐标值和目标的类别。实验中,在SSD模型中增加了特征图的检测层数,增大原图像尺寸,调试相应的参数,经过多次迭代,最终得到目标模型。实验采用行车记录仪采集的图像,在图像中标定出车辆、行人和骑行的人三类,实验表明,检测目标尺寸越小,检测难度越大,检测效果越差,SSD模型对目标检测的平均准确率均值提高了0.082。提出的道路目标检测方法与传统目标识别算法相比,省去了手工特征提取,减少了工作量,提高了模型的泛化能力。  相似文献   

6.
表面缺陷检测是产品质量检测的关键环节,近年来随着深度学习技术的迅速发展,金属材料表面缺陷检测技术大幅提升。对近几年基于深度学习的金属材料表面缺陷检测方法进行了梳理和分析,并从监督方法、无监督方法以及弱监督方法 3个方面对比论述了近年来的研究现状及应用效果。最后系统总结了金属材料表面缺陷检测中的关键问题及解决方法。结合工业需求,对表面缺陷检测的进一步发展进行了思考与展望。  相似文献   

7.
近年来,深度卷积神经网络取得的突破性进展极大地提高了计算机视觉算法能力,基于卷积神经网络的算法已成为目标检测领域的主要研究方向。但由于其庞大的计算量和存储空间需求,该算法在车载平台车辆检测领域的应用受到限制。本文对深度卷积神经网络在车辆检测领域的应用进行研究,在算法架构层面,以构建高速高准确率的车辆检测模型为目标,搭建并训练了适合嵌入式端的轻量级车辆检测模型,并对算法进行了优化。模型测试结果显示,本文搭建的车辆检测算法在保持较高检测精度的情况下,大幅降低了检测模型计算量和存储需求。  相似文献   

8.
红外弱小目标检测被广泛应用于预警、制导等国防领域中。然而,红外弱小目标所占像素少、缺少形状特征和纹理特征,使得红外弱小目标检测成为一个具有挑战性的课题。针对红外弱小目标检测,提出了一种简单高效的实时红外弱小目标检测网络。检测网络利用自适应感受野融合模块来增加小目标周围的上下文信息,并通过引入空间注意力机制来建立不同区域之间的相关性模型,使不同区域之间的相关性和紧凑性得到加强。为了提高检测网络对目标的定位和正负样本的判别能力,分别利用GIOU loss和Focal loss来设计损失函数。在3个红外弱小目标序列和单帧红外图像上进行实验,检测网络分别取得了91.62%,71.54%,81.77%和90.67%的AP值,且检测速度接近165 FPS。实验结果表明,该红外弱小目标检测网络对复杂背景和低信噪比条件下的红外弱小目标具有较好的检测效果。  相似文献   

9.
海面舰船目标检测是遥感图像处理和模式识别领域备受关注的重点研究方向,对舰船目标的自动检测在民用和军用方面都具有重大意义。梳理和分析了典型基于深度学习的目标检测算法的优缺点,并进行了对比和总结;归纳了基于深度学习的舰船目标检测的技术现状,并从多尺度检测、多角度检测、小目标检测、模型轻量化和大幅宽遥感图像舰船目标检测等方面对技术现状进行了详细的介绍。最后,介绍了舰船目标识别算法常用的评价标准和现有的舰船图像数据集,探讨了遥感图像舰船目标检测算法现在所面临的问题和未来的发展趋势。  相似文献   

10.
针对传统零件表面缺陷检测方法准确性差效率低,无法满足智能制造需求的问题,提出基于Faster-RCNN深度学习算法的缺陷检测方法.在Faster-RCNN基本算法的基础上,引入引导锚框算法生成anchor方案,解决算法中anchor方案对本次检测的缺陷目标缺乏针对性、产生大量的冗余区域建议窗口的问题,以提高检测的准确性...  相似文献   

11.
基于深度神经网络(Deep Neural Network,DNN)的深度学习(Deep Learning,DL)在图像识别、语音识别和文本分析等领域取得了巨大成功。但是深度学习在工业领域的应用遇到训练样本数量不够和训练算力不足的困难。将深度神经网络的迁移学习(Transfer Learning)应用到工业产品表面质量检测,解决了深度学习样本和算力不足的问题,其准确率达到了99.8%,超过了传统机器学习算法和没有迁移学习的卷积神经网络(Convolutional Neural Network,CNN)。构造的深度神经网络分为两部分:前面为已经训练好的深度神经网络GoogLeNet,后面部分为识别表面缺陷专用层,训练的时候只需要训练后面部分。  相似文献   

12.
随着人工智能技术的发展,目标检测算法在电力安全管控中表现出巨大的应用潜力。本文首先对基于卷积神经网络的目标检测算法进行了概述,从电力系统人员安全管理、电力设备检测及故障诊断和重要区域环境状态监测3个方面总结分析了目标检测算法在电力安全管控中的应用,最后对目标检测算法在电力安全管控应用存在的问题进行了分析,提出了相关建议。  相似文献   

13.
针对激光超声检测中波场的三维数据处理计算量大且损伤特征提取难的问题,提出了一种基于深度学习模型的导波波场分析方法.首先,以VGG-Net网络为框架,建立了基于VGG11(A-LRN)的残差网络模型,用于挖掘时间-空间波场数据中的导波特征;其次,以局部波数特征为物理机理,采用导波传播的解析式生成训练样本,解决了深度学习大数据获取的问题,获得了波场特征提取的神经网络模型;最后,以激光超声系统在含损伤结构中的实验数据作为测试样本,验证了所提出的网络模型能够提取表征损伤的导波特征,实现了结构的损伤成像,其损伤成像精度均在67%以上,损伤形貌的可视化效果好。  相似文献   

14.
针对现有人行道上障碍物检测效果比较差,提出一种改进的Faster RCNN人行道障碍物检测方法.首先用ResNet101代替VGG16网络,并对其进行优化,使用两个3×3卷积获得比单个卷积更大的接收场,减少了训练参数,提高了对较小障碍物目标的检测精度;其次对原始的RPN结构进行改进,通过增加一个滑动窗口来增大感受野的面积,提高网络的检测能力;然后在特征提取阶段采用双线性插值操作,避免了两次量化对目标检测准确度的影响;最后用Soft-NMS算法对锚框进行筛选,减少了 NMS算法滤除交并比大于阈值的框而出现的漏检.实测结果表明,该算法适用于不同场景下的人行道障碍物检测,具有较好的鲁棒性.  相似文献   

15.
为了提高螺纹孔目标检测的准确率,结合双相机视觉系统与Hough变换圆检测算法,提出了一种基于Faster R-CNN的螺纹孔目标检测方法。首先建立了由双相机组成的图像获取系统,通过安置在高处的工业相机采集工件整体图像,利用Hough变换圆检测算法初步筛选出工件上的疑似螺纹孔的位置,并驱动第二个工业相机逐个在近处采集经Hough变换检测出的疑似螺纹孔的局部精确图像。然后,在自建的螺纹孔数据集上训练以ResNet50为基础网络的Faster R-CNN目标检测模型。最后,将螺纹孔处局部图像输入训练好的Faster R-CNN目标检测模型进一步识别并进行定位。实验结果表明,该方法能有效地避免螺纹孔小目标检测,相对于单独使用Hough变换方法或者Faster R-CNN目标检测方法检测螺纹孔,具有更高的识别和定位精度。  相似文献   

16.
针对玻壳缺陷检测的准确率不高的问题,提出了一种基于改进AlexNet的玻壳缺陷检测模型。该模型在AlexNet网络模型基础上,引入1×1卷积、通道洗牌卷积层和残差网络,优化了模型的结构。将改进前后的模型分别对玻壳图库随机抽取的玻壳图片进行测试,实验结果表明:改进后的模型能够识别玻壳残缝、破口、污点等缺陷,识别准确率达95.9%。改进后的AlexNet模型在玻壳缺陷识别具有良好的适用性。  相似文献   

17.
本文首先介绍了无人驾驶汽车的内涵,并对全球的无人驾驶在近几年的发展历史以及研究现状进行了阐述;其次分析我国无人驾驶汽车技术发展面临的主要问题,并提出一定的解决方案;同时分析了深度学习在无人驾驶领域的应用,最后对无人驾驶领域方面的未来做出预测。  相似文献   

18.
19.
针对航天密封圈表面缺陷人工检测效率低、传统图像处理检测算法通用性差的问题,提出了两种基于深度学习的密封圈表面缺陷检测算法。首先,针对缺陷大部分为小目标的特点,选取对小目标较敏感的RetinaNet网络作为检测算法的基本架构,通过在RetinaNet网络中引入轻量级网络MoGaA构建出MoGaA-RetinaNet算法。然后,为了提高检测精度,在MoGaA-RetinaNet基础上,用分解卷积模块代替MoGaA骨干网络中的深度卷积构建了newMoGaA骨干网络,设计出newMoGaA-RetinaNet算法。最后,在测试集上的实验结果表明,MoGaA-RetinaNet算法比RetinaNet算法检测速度更快,但检测准确率略低;而newMoGaA-RetinaNet算法实现了检测精度与检测速度的良好平衡,比RetinaNet算法准确率提升4.5%,达到92%,检测速度提升55%,达到31 frame/s,网络参数量减少50%。所设计的newMoGaA-RetinaNet算法可以实现密封圈表面缺陷的快速准确检测。  相似文献   

20.
在非结构化环境机器人抓取任务中,获取稳定可靠目标物体抓取位姿至关重要。本文提出了一种基于深度卷积网络的多目标动态三维抓取位姿检测方法。首先采用Faster R-CNN进行多目标动态检测,并提出稳定检测滤波器,抑制噪声与实时检测时的抖动;然后在提出深度目标适配器的基础上采用GG-CNN模型估算二维抓取位姿;进而融合目标检测结果、二维抓取位姿以及物体深度信息,重建目标物体点云,并计算三维抓取位姿;最后搭建机器人抓取平台,实验统计抓取成功率达到95.6%,验证了所提方法的可行性及有效性,克服了二维抓取位姿固定且单一的缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号