共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有端到端自动驾驶方法中存在的驾驶指令预测不准确、模型结构体量大和信息冗余多等问题,提出一种新的基于深度视觉注意神经网络的端到端自动驾驶模型。为了更有效地提取自动驾驶场景的特征,在端到端自动驾驶模型中引入视觉注意力机制,将卷积神经网络、视觉注意层和长短期记忆网络进行融合,提出一种深度视觉注意神经网络。该网络模型能够有效提取驾驶场景图像的空间特征和时间特征,并关注重要信息且减少信息冗余,实现用前向摄像机输入的序列图像来预测驾驶指令的端到端自动驾驶。利用模拟驾驶环境的数据进行训练和测试,该模型在乡村路、高速路、隧道和山路四个场景中对方向盘转向角预测的均方根误差分别为0.009 14、0.009 48、0.002 89和0.010 78,均低于对比用的英伟达公司提出的方法和基于深度级联神经网络的方法;并且与未使用视觉注意力机制的网络相比,该模型具有更少的网络层数。 相似文献
2.
3.
Xiao Zhaolin Liu Huan Zhou Guoqing Zhu Feng Jin Haiyan 《Multimedia Tools and Applications》2021,80(11):16283-16297
Multimedia Tools and Applications - In both ethological and pharmacological experiments, open field test (OFT) is a classic experiment for measuring mouse general activity and exploratory... 相似文献
4.
Pattern Analysis and Applications - Video-based group emotion recognition is an important research area in computer vision and is of great significance for the intelligent understanding of videos... 相似文献
5.
6.
Li Tao Leng Jiabing Kong Lingyan Guo Song Bai Gang Wang Kai 《Multimedia Tools and Applications》2019,78(3):3411-3433
Multimedia Tools and Applications - Hyperspectral Image (HSI) classification is one of the fundamental tasks in the field of remote sensing data analysis. CNN (Convolutional Neural Network) has... 相似文献
7.
Applied Intelligence - Hyperspectral imaging technology, combining traditional imaging and spectroscopy technologies to simultaneously acquire spatial and spectral information, is deemed to be an... 相似文献
8.
Kim Bubryur Yuvaraj N. Sri Preethaa K. R. Arun Pandian R. 《Neural computing & applications》2021,33(15):9289-9305
Neural Computing and Applications - Surface cracks on the concrete structures are a key indicator of structural safety and degradation. To ensure the structural health and reliability of the... 相似文献
9.
针对跟踪过程中因光照变化、快速运动及尺度变化等造成的角点定位精准度下降问题,受SiamCAR的跟踪框架启发提出一种无锚双注意力孪生网络的视觉跟踪算法.首先,算法的主干网络采用ResNet-50并结合增强多层融合特征图进行特征提取,充分利用网络浅层特征的定位信息和深层次的语义信息,提高算法对目标特征的语义理解能力;然后,构建混合注意力模块缓解无锚跟踪器角点定位不准确问题,提高算法的跟踪准确性和定位精度;最后,在GOT10K、UAV123、LaSOT等数据集上进行广泛实验,并与当前的先进跟踪器进行比较,该算法可以较好地抵抗光照变化、快速运动及尺度变化等多种复杂因素带来的影响,同时,在多项评测指标上获得了良好的跟踪性能. 相似文献
10.
Songhe FengAuthor Vitae Hong BaoAuthor Vitae Congyan LangAuthor Vitae 《Neurocomputing》2011,74(17):3619-3627
Tag ranking has emerged as an important research topic recently due to its potential application on web image search. Existing tag relevance ranking approaches mainly rank the tags according to their relevance levels with respect to a given image. Nonetheless, such algorithms heavily rely on the large-scale image dataset and the proper similarity measurement to retrieve semantic relevant images with multi-labels. In contrast to the existing tag relevance ranking algorithms, in this paper, we propose a novel tag saliency ranking scheme, which aims to automatically rank the tags associated with a given image according to their saliency to the image content. To this end, this paper presents an integrated framework for tag saliency ranking, which combines both visual attention model and multi-instance learning to investigate the saliency ranking order information of tags with respect to the given image. Specifically, tags annotated on the image-level are propagated to the region-level via an efficient multi-instance learning algorithm firstly; then, visual attention model is employed to measure the importance of regions in the given image. Finally, tags are ranked according to the saliency values of the corresponding regions. Experiments conducted on the COREL and MSRC image datasets demonstrate the effectiveness and efficiency of the proposed framework. 相似文献
11.
12.
Ramaswamy Srividhya Lakshmi Chinnappan Jayakumar 《Journal of Intelligent Information Systems》2022,58(2):379-404
Journal of Intelligent Information Systems - Sentiment analysis for user reviews has received substantial heed in recent years. There are many deep learning models for natural language processing... 相似文献
13.
申燕萍 《计算机测量与控制》2020,28(8):67-71
针对传统检测方法受到复杂环境和人工干预影响而导致检测精准度低的问题,提出了基于CNN深度学习的机器人抓取位置检测方法。根据CNN基本结构,研究基于CNN深度学习检测原理。按照切线斜率方向划分机器人抓取位置模板点,计算模板匹配距离,得到机器模板上匹配点到边缘坐标图像点中最近的距离。保持横纵坐标变量保持不变,观察映射图上坐标灰度值及匹配度函数分布情况。引入GA求解匹配方法,根据匹配流程,寻找最优解。分析彩色图像、深度图像的可抓取位置和不可抓取位置信息,并将其转化为符合CNN深度学习的数据格式,完成信息预处理。根据机器人抓取作业示意图,设计具体检测流程,并显示检测结果,由此完成机器人抓取位置检测。由实验结果可知,该方法检测精准度最高可达到0.988,能够应用到实际机器人抓取相关任务之中。 相似文献
14.
Anika Tahsin Meem Mohammad Monirujjaman Khan Mehedi Masud Sultan Aljahdali 《计算机系统科学与工程》2022,41(3):1223-1240
The COVID-19 pandemic has caused trouble in people’s daily lives and ruined several economies around the world, killing millions of people thus far. It is essential to screen the affected patients in a timely and cost-effective manner in order to fight this disease. This paper presents the prediction of COVID-19 with Chest X-Ray images, and the implementation of an image processing system operated using deep learning and neural networks. In this paper, a Deep Learning, Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used for building and training neural nets. Scikit-learn was used for machine learning from end to end. Various deep learning features are used, such as Conv2D, Dense Net, Dropout, Maxpooling2D for creating the model. The proposed approach had a classification accuracy of 96.43 percent and a validation accuracy of 98.33 percent after training and testing the X-Ray pictures. Finally, a web application has been developed for general users, which will detect chest x-ray images either as covid or normal. A GUI application for the Covid prediction framework was run. A chest X-ray image can be browsed and fed into the program by medical personnel or the general public. 相似文献
15.
16.
基于视觉注意机制的彩色图像显著性区域提取 总被引:2,自引:0,他引:2
图像显著性区域提取是计算机视觉处理的重要步骤。结合人类视觉心理、生理模型, 提出一种基于视觉注意机制的彩色图像显著性区域提取模型。通过改进的分水岭算法对彩色图像进行预分割, 从而将原图像分成若干子区域, 在此基础上运用提出的区域化空间注意力模型对各个子区域进行显著图计算, 得到最终的显著性区域提取结果。实验结果表明, 提出的显著性区域提取算法可以很好地从彩色图像中得到与视觉注意机制相一致的结果, 且满足实时性要求, 与传统方法相比, 算法提取的区域更完整、更准确。 相似文献
17.
18.
提出一种基于视觉注意的自然场景彩色图像支持向量机(Support Vector Machine,SVM)分割方法。基于人类视觉注意机制将图像进行预分割,得到图像的显著区域和非显著区域,利用形态学操作对得到的图像进行处理,并自动选取和标注SVM的训练样本,用训练后的SVM分类器对整幅图像进行分割。该方法充分利用视觉注意机制方法的有效信息,解决了其边界不确定的缺陷,并且结合具有很好泛化性能的SVM学习方法,在无需先验知识以及任何人工干预的情况下,实现对自然场景图像的分割。为验证算法的有效性,分别从加州大学伯克利分校图像数据库及互联网选取多幅彩色图像进行实验,实验结果表明:该方法的分割结果不仅与人类视觉注意结果相一致,而且与伯克利图像数据库中人工标注结果相比,得到较好分割效果。 相似文献
19.
Neural Computing and Applications - The automatic narration of a natural scene is an important trait in artificial intelligence that unites computer vision and natural language processing. Caption... 相似文献
20.
Utke Markus Zadtootaghaj Saman Schmidt Steven Bosse Sebastian Möller Sebastian 《Multimedia Tools and Applications》2022,81(3):3181-3203
Multimedia Tools and Applications - Gaming video streaming services are growing rapidly due to new services such as passive video streaming of gaming content, e.g. Twitch.tv, as well as cloud... 相似文献