首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
对超声波在聚合物成型加工中的降粘机理进行了一定的研究,并对它在聚合物成型加工中的应用进行了综述.在聚合物的成型加工中,超声波的合理施加可以大幅度降低聚合物熔体的粘度,降低加工设备的要求和条件,更有利于高粘度聚合物的成型加工.  相似文献   

2.
介绍了应力场、超声波场、电磁场、高能辐射场在聚合物动态成型过程中的应用,并且概述了各种场致作用对聚合物加工的影响及其相关机理。  相似文献   

3.
综述了近年来国内外能量场在聚合物加工领域中的应用及其最新进展,详细介绍了应力场、电磁场、超声波场等能量场在聚合物成型与加工中的应用,简要阐述了其作用机理的数学模型.概述了各自领域的最新成果,并总结了能量场聚合物加工领域中应用存在的具体问题和应用前景.  相似文献   

4.
介绍了计算机模拟技术在聚合物加工及成型中的应用,给出了国内计算机模拟技术在聚合物成型及加工中的应用实例。并展望了计算机模拟技术在聚合物成型加工中的应用前景。  相似文献   

5.
本文探讨了聚合物及其复合物的加工成型新原理和工艺过程。分析了物理场(力学场)对聚合物流变性能影响的方向性作用,指出这种作用的运用,乃是建立制品新成型工艺过程的有效途径。着重介绍了固态挤出、液压挤出、熔体循环剪切成型、超声波剪切振荡与整体振荡作用以及超强薄膜与纤维制备等问题。  相似文献   

6.
润滑剂     
润滑剂在塑料加工中起着重要作用 ,是塑料加工助剂中的重要类别之一。其功能是在塑料加工过程中 ,通过降低聚合物熔融体的粘度及防止聚合物粘结在模具表面 ,以改善加工性能 ,达到提高加工流动性、降低螺杆扭矩、提高制品表面光洁度 ,使加工过程顺利进行 ,这对提高机械加工效率、增加成品率尤为重要。润滑剂在热塑性、热固性塑料加工中是必不可少的助剂 ,特别是在PVC制品的成型加工中尤为重要。聚合物成型加工过程中添加润滑剂 ,对减少熔融树脂颗粒之间的摩擦力 ,熔融后减少树脂分子之间的摩擦力 ,降低熔融体与加工模具之间的粘结力 ,促进…  相似文献   

7.
聚合物熔体密度在线测量在精密注射成型中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
许红  吴大鸣  刘颖  张亚军 《化工学报》2012,63(1):325-330
基于超声波传播速度与传播介质物性参数密切关联和快速响应的特性,通过实验和理论分析得到了超声波传播速度与聚合物熔体密度存在单值对应关系的重要结论;根据精密注塑制品成型周期短的特点,在实验的基础上采用改进最小二乘法,即缩小自变量使其在0~1的范围内可以有效降低拟合阶数,提高运算速度的方法,建立了基于超声波速度单值变量的熔体密度在线软测量模型,并将该软测量模型应用于注射成型过程中对聚合物熔体注射重量的控制;即由该软测量模型得到的在线熔体密度与螺杆截面积的乘积对螺杆注射行程进行积分,可以精确计算出聚合物熔体注射重量,以此实现对注射机成型制品重量的精密控制;理论和实验都验证了基于熔体密度在线软测量的注射量重量控制方法优于传统的体积控制方法,是提高注射成型过程制品重量重复精度的有效方法。  相似文献   

8.
在聚合物制品外形控制和性能调控过程中,高分子熔体的流动分析对于研究高分子成型工艺至关重要.POLYFLOW软件在高分子成型加工中的应用日渐广泛.本文深入分析了POLYFLOW在挤出、吹塑和热成型等方面的应用,重点介绍了挤出过程中的正向流动仿真和逆向口模设计,最后对POLYFLOW在高分子成型加工中的应用研究方向进行展望...  相似文献   

9.
利用理论并结合实验对超声振动作用下聚合物的塑化进行了研究,探讨了超声波熔融塑化中的摩擦热效应和超声空化效应,并采用数值分析方法研究了不同参数对超声波空化效应的影响.结果表明:低频及较高声压幅值有利于空化效应的发生.利用自制的超声振动塑化装置,实验研究了不同声压幅值对超声振动成型塑料制件质量的影响,进一步验证了空化效应在聚合物超声波熔融塑化的主导作用.  相似文献   

10.
聚合物微流控芯片微通道复制成型技术   总被引:2,自引:2,他引:0  
阐述了复制成型技术在实现微流控芯片批量化生产过程中的重要意义。分析了微流控芯片对材料的要求,介绍了常用于制作微流控芯片的聚合物材料及其模塑性能。比较了目前常用的加工复制成型模具凸模微结构的加工方法。综述了热压成型、注射成型以及浇铸成型在微流控芯片微通道成型中的应用,并对其进行了比较分析,展望了未来微流控芯片复制成型技术的发展趋势。  相似文献   

11.
Bobing He 《Polymer》2006,47(7):2448-2454
The orientation of polymer chain has a great effect on its mechanical properties, therefore, it is always an important issue on how to characterize, accurately and quickly, the orientation of polymer chain during processing. In this article, according to the property that ultrasound travels in different velocities in anisotropic media, normal incident shear wave was utilized to explore the orientation structure of HDPE/iPP blends obtained by dynamic packing injection molding. The ultrasonic technique is consistent with the 2D-WAXS in charactering the orientation degree of polymer chains, although ultrasonic technique focuses on the overall orientation of polymer blends while the 2D-WAXS reveals the crystalline orientation of each component. Our work demonstrates that ultrasonic technique might be a reliable, fast and easy way to characterize the orientation structure of crystalline polymer blends. The ultrasonic measurements were performed off-line, but the achievement provides the possibility for on-line detection of orientation structure in injection molding by using ultrasonic technique.  相似文献   

12.
The wall slip of linear polymer melts under ultrasonic vibration is investigated by correcting the slip mechanism, and melt flow behaviors in ultrasonic‐assisted micro‐injection molding (UμIM) method are discussed. Based on the effect mechanism of ultrasonic vibration on the melt, theoretical models of the critical shear stresses for the onset of weak and strong wall slip during UμIM are established, and the change in rheological properties due to the onset of wall slip under ultrasonic vibration is experimental investigated by a built measurement system. The results show that the onset of weak and strong wall slip of the melt in micro cavity are promoted by ultrasonic vibration, which agree with the built theoretical models, and the melt filling capability in micro cavity is enhanced by reducing apparent viscosity and releasing shear stress of the polymer melt, which improves the molding quality of micro polymer parts via UμIM method. POLYM. ENG. SCI., 59:E7–E13, 2019. © 2018 Society of Plastics Engineers  相似文献   

13.
Microplastic parts are usually fabricated by microinjection molding (µIM) which is an effective and low cost method. But the defects, such as short shot, often appear during fabricating plastic parts with high aspect ratio structures or complex shapes. a longitudinal ultrasonic‐assisted microinjection molding (LUµIM) method effectively improve the molding quality. In the paper, the mechanism that the ultrasonic vibration impacts on the polymer melt is investigated. Considering from the point view of energy effect, mechanical energy transmission, and mechanical energy conversion, which are divided from the energy of ultrasonic vibration, are analyzed. The model of energy transmission and a new rheological equation including the parameters of ultrasonic vibration are established to describe the rheological behavior of polymer melt in microcavity. The simulation results show that the ultrasonic vibration improves the viscosity field and the velocity field in complex shaped microcavity, and leads to a better filling capability and uniformity of the polymer melt. This research achievement can be used to guide the process flow and parameter selection of LUµIM. POLYM. ENG. SCI., 57:797–805, 2017. © 2016 Society of Plastics Engineers  相似文献   

14.
In this study, a noninvasive and nondestructive ultrasonic technique has been used to monitor the polymer injection‐molding process in an attempt to establish a fundamental understanding of the processing/morphology/ultrasonic signal relationships. The ultrasonic technique not only can provide information on solidification affected by various temperatures and pressures but also can reflect the evolution of the crystal morphology and phase morphology of polymer blends. In addition, the periodic vibration of the dynamic‐packing injection‐molding process, in which the melt is forced to move repeatedly in a chamber by two pistons that move reversibly with the same frequency as the solidification progressively occurs from the mold wall to the molding core part, can also be monitored with the ultrasonic velocity and attenuation. Our results indicate that the ultrasonic technique is sensitive and promising for the real‐time monitoring of the injection‐molding process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
建立了综合考虑二次成型黏弹性熔体充填流动约束环境影响的模内微装配成型过程黏弹性热流固耦合变形机理的理论模型,并通过有限元数值模拟,研究了二次成型熔体黏度对模内微装配成型过程黏弹性热流固耦合变形的影响规律。结果表明,黏弹性热流固耦合作用诱导的预成型微型轴变形的驱动力来源于微装配界面形成的热流固耦合压力和黏性拖曳剪应力,而二次成型熔体流动的弹性正应力对耦合变形具有抑制作用,微装配界面的热流固耦合载荷和微型轴的变形均随着二次充填熔体的黏度增大而增大,减小二次成型熔体黏度有利于提高其微装配加工精度。  相似文献   

16.
Online viscosity information on processing lines can reflect the material flow resistance and offer valuable guidance for manufacturing across various industries. Considering the accuracy, devices, and processes involved in injection molding, characterizing the melt's flow state during material processing poses a significant challenge. To reduce investment in viscometers, avoid influencing the components' surface aesthetics due to the installation of sensors, and make the flow state detect online in mold, this study designs a rheometric mold with cylindrical runners for identifying the in situ viscosity of molten resin during injection molding. The detection conditions of injection speed and cavity pressure variations, the entrance effect, and the viscous dissipation for Polycarbonate are analyzed under various conditions. The in situ viscosity is identified and compared with the standard cross-WLF model. The result shows that the melt velocity and cavity pressure variations during the filling process create a stable environment for in situ rheological characterization and the detected viscosity is related to the shear rate, melt temperature, and channel dimension in injection molding. The designed mold with cylindrical runners for determining the in situ thermal-rheological behavior of polymer is distinguished successfully and exhibits prospects for the development of low-cost, nondestructive, and inner-mold measurement in manufacturing applications.  相似文献   

17.
Ultrasonic diagnosing technique with a new high‐temperature ultrasonic transducer is developed to real‐time diagnose polymer processing and its morphology changes in injection molding processing. Compared with the previous researches, the new technique can provide more and accurate information. In this study, ultrasound diagnosis shows that longitudinal wave can real‐time characterize the data of the injection process and polymer morphology changes, including melt flow arrival time, the part ejection time, filling and packing stages, polymer solidification process, and the morphology changes during polymer crystallization. Shear waves can real‐time diagnose Young's and shear storage modulus, anisotropy property of polymer in injection molding. During our research, real‐time ultrasonic diagnosis shows that the storage modulus along the vertical direction is larger than that of the parallel to the melt flow direction under our setup injection conditions. Scanning electron microscopy and dynamic mechanical analysis measurements present that it is because the crystalline lamellas of HDPE are parallel arrangement and grow in a vertical to melt flow direction owing to injection shear force under a certain injection conditions. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
低频振动场中聚合物熔体的流变行为   总被引:4,自引:0,他引:4  
介绍了自行研制的振动注射成型装置的结构及其用研究聚合物熔体流变行为的方法。通过对HDPE和PS的实验研究:发现熔体表观粘度与振动频率之间的关系表现为非线形关系,存在一最佳的振动频率使得处于振动场中的聚合物熔体在此频率下粘度最小;“频率-温度”等效原理可以用来加工热敏性聚合物,两者的综合作用在降低粘度、增加流动性方面会达到事半功倍的效果。  相似文献   

19.
Reactive polymer processing is the combined polymerization and processing of reactive prepolymers in a single operation. It encompasses a wide variety of processing methods including Reaction Injection Molding (RIM), a relatively new and growing fabrication method. Reaction Injection Molding utilizes impingement mixing of low viscosity fluids, injection of the reactive mixture into a mold, and polymerization therein to enable the molding of large plastic items. Polyurethane is currently the most commercially utilized RIM material although a number of other systems such as epoxy, nylon, and polyester are also suitable. Non-urethane systems such as epoxy are often not as amenable to the process, however, since they are slower reactions and have a potentially damaging exotherm. A comprehensive analysis was developed to determine if a molding system is processable by RIM. Criteria for processability were established and include the ability to mix on impingement, fill large molds characteristic of the process, and provide a short cycle time without promoting a damaging exotherm. The treatment, consisting of both experimental and numerical techniques, was applied to identify potential epoxy molding systems, establish their processing window, and conduct an optimization of the process parameters to evaluate productivity. The analysis and its conclusions are applicable to most reactive polymer processing operations that employ a rapid, exothermic, polymerization reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号