首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To investigate the effect of diphtheria toxin interleukin 2 recombinant fusion protein (DAB 486IL-2) on in vitro synthesis of immunoglobulin and rheumatoid factor (RF) in patients with severe refractory rheumatoid arthritis (RA) enrolled in a phase II, double blind, placebo controlled study. METHODS: Anticoagulated venous blood samples were obtained before (Day 1) and after (Day 28) intravenous infusion of either DAB 486IL-2 at 0.075 mg/kg/day (12 patients) or saline placebo (10 patients) on Days 1-5. Peripheral blood leukocytes (PBL) were prepared by density gradient centrifugation, cultured in the presence and absence of pokeweed mitogen (PWM) for one week, and culture supernatants assayed for immunoglobulins and IgM RF by ELISA. RESULTS: Compared to placebo treated patients, PWM induced IgM RF synthesis by PBL decreased after treatment with DAB 486IL-2 (p = 0.043). However, there was no apparent correlation with clinical improvement. PWM induced IgM, IgA, and IgG synthesis also tended to decrease, although the changes did not attain statistical significance. In contrast, PWM induced IgM RF, IgM, IgA, and IgG synthesis by PBL from patients treated with placebo tended to increase during the observation period. Spontaneous immunoglobulin and IgM RF production by PBL from either the DAB 486IL-2 or placebo patients remained stable. CONCLUSION: These observations raise the possibility that DAB 486IL-2 may diminish B cell function either directly or indirectly through effects on T cell function, but the change may not correspond to clinical response.  相似文献   

2.
The ultimate goal in the management of inherited as well as acquired diseases is a rational therapy with the aim to eliminate the underlying biochemical defects, rather than a symptomatic treatment. Among other approaches somatic gene therapy is a promising candidate to meet these objectives and appears to have the potential to revolutionize modern medicine. Gene therapy is characterized by the transfer of genetic information to a patient through the use of recombinant DNA technology. Several strategies for the treatment of monogenetic disorders as well as chronical diseases like cancer and AIDS have been used in various somatic gene therapy projects. So far, 329 clinical studies (phases I, I/II and II) with over 2500 patients have been initiated worldwide since 1989. No significant toxicity and adverse side effects have been observed. To allow efficient transfer of the therapeutic genes, a variety of gene delivery techniques have been developed based on viral and non-viral vector systems. For the success of this technology it is vital to achieve regulated and sustained expression of foreign genes in specific target tissues. This will be crucial for the widespread application of somatic gene therapy. So far none for the gene delivery systems is able to meet the requirements of safety, efficiency and specificity demonstrating that vector research will be an important focus in the development of optimized transfer methods. From a regulatory point of view pharmaceutical DNA-products can be regarded as drugs and are therefore subject to the same regulations. Human gene therapy must, however, be limited to manipulations affecting somatic, differentiated cells to prevent the transferred gene from being transmitted to the individual's descendants. Applications for the purpose of 'enhancement' and not for the treatment of diseases are also not acceptable. Under these prerequisites, somatic gene therapy does not raise any new ethical concerns and can be interpreted as a special form of an organ transplantation. A comparison of the different regulatory situations of gene therapy in Europe and the United States demonstrates that for the European countries a uniform regulation is desired. Today somatic gene therapy is still in its infancy. It will continue to be scientifically and technically challenging until simple and effective procedures will have been developed. Demonstration of its clinical efficacy especially in the long term will have to be the next step. Looking at the history of biotechnology and the success of the biotechnology industry that is now providing safe and efficient products from recombinant DNA-technology there is little doubt that gene therapy will become a successful treatment for various indications in the next decade. The purpose of this article is to review the current status of the development in somatic gene therapy.  相似文献   

3.
The membrane topography of proteins that convert between soluble and membrane-inserted states has proven a challenging problem. In particular, it has been difficult to define both whether a transmembrane orientation is achieved and what are the boundaries of membrane-inserted segments. In this report the fluorescence of bimane-labeled Cys residues and the binding of anti-BODIPY antibodies to BODIPY-labeled Cys residues are combined to define these features for helices TH8 and TH9 of the T domain of diphtheria toxin. Using a series of labeled residues the topography of these helices was examined in both conformations of membrane-inserted T domain identified previously (Wang, Y., Malenbaum, S. E., Kachel, K., Zhan, H., Collier, R. J., and London, E. (1997) J. Biol. Chem. 272, 25091-25098). In the shallowly inserted conformation these helices are found to be aligned close to the cis surface of the bilayer all along their sequences. In contrast, in the more deeply inserted conformation most TH8 and TH9 residues examined located in a non-polar environment, with the boundaries of the membrane-inserted sequences close to residues 324 and 372-374 on the cis (insertion) side of the bilayer. It was also found that residues 348 and 349, which are in the loop connecting TH8 and TH9, reached the opposite trans side of the bilayer, but did not protrude fully into the aqueous environment. These boundaries suggest the membrane-inserted segments of TH8 and TH9 form transmembrane helices about 25 residues in length, and suggest that they are connected by a tight turn. It is concluded that this combination of fluorescent techniques can be combined to obtain transmembrane helix topography.  相似文献   

4.
Oxidative DNA damage by a model Cr(V) complex, [CrO(ehba)2]-, with and without added H2O2, was investigated for the formation of base and sugar products derived from C1', C4', and C5' hydrogen atom abstraction mechanisms. EPR studies with 5,5-dimethylpyrroline N-oxide (DMPO) have shown that Cr(V)-ehba alone can oxidize the spin trap via a direct chromium pathway, whereas reactions of Cr(V)-ehba in the presence of H2O2 generated the hydroxyl radical. Direct (or metal-centered) Cr(V)-ehba oxidation of single-stranded (ss) and double-stranded (ds) calf thymus DNA demonstrated the formation of thiobarbituric acid-reactive species (TBARS) and glycolic acid in an O2-dependent manner, consistent with abstraction of the C4' H atom. A minor C1' H atom abstraction mechanism was also observed for direct Cr(V) oxidation of DNA, but no C5' H atom abstraction product was observed. Direct Cr(V) oxidation of ss- and ds-DNA also caused the release of all four nucleic acid bases with a preference for the pyrimidines cytosine and thymine in ds-DNA, but no base release preference was observed in ss-DNA. This base release was O2-independent and could not be accounted for by the H atom abstraction mechanisms in this study. Reaction of Cr(V)-ehba with H2O2 and DNA yielded products consistent with all three DNA oxidation pathways measured, namely, C1', C4', and C5' H atom abstractions. Cr(V)-ehba and H2O2 also mediated a nonpreferential release of DNA bases with the exception of the oxidatively sensitive purine, guanine. Direct and H2O2-induced Cr(V) DNA oxidation had opposing substrate preferences, with direct Cr(V) oxidation favoring ss-DNA while H2O2-induced Cr(V) oxidative damage favored ds-DNA. These results may help explain the carcinogenic mechanism of chromium(VI) and serve to highlight the differences and similarities in DNA oxidation between high-valent chromium and oxygen-based radicals.  相似文献   

5.
We have studied the wild type and two variants of the glucocorticoid receptor DNA-binding domain (GRDBD): in one variant the three residues (the 'P-box' in GRDBD) that are essential for the discrimination between GREH and EREH are mutated to those in the estrogen receptor DBD (GRDBDega) and the other variant is a point mutation of one P-box residue, Ser459Gly (GRDBDggv). Molecular dynamics simulations (0.5-0.7 ns) have been performed on the GRDBDs, free in solution as well as in complex with the half-site response elements of the glucocorticoid (GREH) and estrogen (EREH) receptors. The residues which are central when forming the protein dimer interface in GRE-(GRDBD)2 (the 'D-box') were found to have different conformations in the different GRDBD-DNA complexes. This is consistent with experimental results showing that the cooperativity of dimeric GRDBD binding to DNA strongly depends on both the response element and the P-box residues. In our simulations the structures of GREH-GRDBDgsv (i.e. wild-type) and GREH-GRDBDggv were more similar to each other than to the respective GRDBDs bound to EREH. This is due to a thymine methyl group which is present in the major groove of the GREH and prevents the first zinc coordinating subdomain in GRDBD to approach GREH, but which is absent in EREH. Thus, EREH-GRDBD is able to respond more to the Ser459Gly mutation than GREH-GRDBD.  相似文献   

6.
The present data on the structure and functional features of diphtheria toxin, the main pathogenic factor of diphtheria infection, have been described. Information on the primary and secondary structures and X-ray analysis of this protein is presented and discussed. The structures of catalytic, transmembrane and receptor-binding domains of diphtheria toxin have been considered in detail and the functional roles of some amino-acid residues of these domains have been analyzed.  相似文献   

7.
The membrane insertion and translocation of diphtheria toxin, which is induced in vivo by low pH, is thought to be directed by the hydrophobic alpha-helices of its transmembrane (T) domain. In this study the structure of membrane-associated T domain was examined. Site-directed mutants of the T domain with single Trp residues were prepared at the two naturally occurring positions, 206 (near the N-terminal end of helix TH1) and 281 (within helix TH5), as well as at three residues in helix TH9, in which the substitutions F355W (near the N-terminal end of TH9), I364W (close to the center of TH9), and Y375W (near the C-terminal end of TH9) were made. All these mutants were found to undergo the low-pH-induced conformational change observed with wild-type T domain and insert into model membranes at low pH. The location of Trp residues relative to the lipid bilayer was characterized in model membrane vesicles by fluorescence emission and by quenching with nitroxide-labeled phospholipids. In TH9, residue 375 was shallowly inserted, residue 364 deeply inserted, and residue 355 located at an intermediate depth. Residues 206 and 281 exhibited moderately deep insertion. It was also found, in agreement with our previous study using bimane-labeled protein (Wang et al. (1997) J. Biol. Chem. 272, 25091-25098), that TH9 switches from a relatively shallowly inserted state to a more deeply inserted state when the concentration of the T domain in the membrane is increased or the thickness of the membrane bilayer is decreased. In particular, the depth of residue 355 was found to increase under the conditions giving deeper insertion. In contrast, residue 375 remained shallowly located in both states, as predicted from its location on the polar C-terminus of TH9. It is concluded that TH1 and TH5 insert into the lipid bilayer in both T domain conformations. In addition, Trp depths suggest that even in the shallowly inserted state there is a significant degree of insertion of TH9. These results suggest regions of the T domain in addition to the hydrophobic TH8/TH9 hairpin insert into membranes. Models for the structure of the membrane-inserted T domain are discussed.  相似文献   

8.
The human and shark Na-K-Cl cotransporters (NKCC), although 74% identical in amino acid sequence, exhibit marked differences in ion transport and bumetanide binding. We have utilized shark-human chimeras of NKCC1 to search for regions that confer the kinetic differences. Two chimeras (hs3.1 and its reverse sh3.1) with a junction point located at the beginning of the third transmembrane domain were examined after stable transfection in HEK-293 cells. Each carried out bumetanide-sensitive 86Rb influx with cation affinities intermediate between shark and human cotransporters. In conjunction with the previous finding that the N and C termini are not responsible for differences in ion transport, the current observations identify the second transmembrane domain as playing an important role. Site-specific mutagenesis of two pairs of residues in this domain revealed that one pair is indeed involved in the difference in Na affinity, and a second pair is involved in the difference in Rb affinity. Substitution of the same residues with corresponding residues from NKCC2 or the Na-Cl cotransporter resulted in cation affinity changes, consistent with the hypothesis that alternative splicing of transmembrane domain 2 endows different versions of NKCC2 with unique kinetic behaviors. None of the changes in transmembrane domain 2 was found to substantially affect Km(Cl), demonstrating that the affinity difference for Cl is specified by the region beyond predicted transmembrane domain 3. Finally, unlike Cl, bumetanide binding was strongly affected by shark-human replacement of transmembrane domain 2, indicating that the bumetanide-binding site is not the same as the Cl-binding site.  相似文献   

9.
The low pH triggered membrane insertion of the T domain of diphtheria toxin is a critical step in the translocation of the C domain of the toxin across membranes in vivo. We previously established that the T domain can interact with membranes in two distinct conformations, one in which the TH8/TH9 helical hairpin lies close to the bilayer surface and a second in which it inserts more deeply and appears to be transmembraneous. The loss of charge on residues E349 and D352 due to protonation at low pH has been proposed to be a critical step in transmembrane insertion, because they are within a loop connecting TH8 and TH9, and must cross the membrane upon transmembrane insertion. In this report, the role of these residues was examined by measuring the effect of the double substitution E349K/D352K on the conformation of the TH8/TH9 hairpin through a fluorescent group attached to TH9. At pH 4.5, there was shallower insertion of TH8/TH9 of the E349K/D352K mutant relative to T domain with wild-type residues at 349 and 352. In addition, smaller and/or fewer pores were obtained with the E349K/D352K mutant relative to the wild-type. On the other hand, high T domain concentrations, or further decreasing pH, allowed transmembrane insertion of both the wild-type and the 349K/352K mutant as well as induction of larger and/or more numerous pores. Furthermore, the transmembrane insertion process was rapid for both the mutant and wild-type. This shows that the mutant has the capacity to form a transmembrane structure similar to that of the wild-type T domain and, thus, that introduction of charged groups in membrane-penetrating regions of a protein does not introduce an insurmountable barrier to transmembrane movement. The linkage between the ability of the T domain to form the transmembrane conformation and pores suggests that the effects of these mutations in inhibiting pore formation are likely to partly result from the inability to insert properly. Additionally, the observation that decreasing pH allows the 349K/352K mutant to insert deeply indicates that there are residues other than E349 and D352 whose protonation promotes transmembrane insertion.  相似文献   

10.
The folding and assembly of procollagen occurs within the cell through a series of discrete steps leading to the formation of a stable trimer consisting of three distinct domains: the N-propeptide, the C-propeptide and the collagen triple helix flanked at either end by short telopeptides. We have established a semi-permeabilized cell system which allows us to study the initial stages in the folding and assembly of procollagen as they would occur in the intact cell. By studying the folding and assembly of the C-propeptide domain in isolation, and a procollagen molecule which lacks the C-propeptide, we have shown that this domain directs the initial association event and is required to allow triple helix formation. However, the essential function of this domain does not include triple helix nucleation or alignment, since this can occur when the C-propeptide is substituted with a single transmembrane domain. Also the telopeptide region is not involved in triple helix nucleation; however, a minimum of two hydroxyproline-containing Gly-X-Y triplets at the C-terminal end of the triple helix are required for nucleation to occur. Thus, the C-propeptide is required solely to ensure association of the monomeric chains; once these are brought together, the triple helix is able to nucleate and fold to form a correctly aligned triple helix.  相似文献   

11.
In order to gain a better insight into the structure and function of the regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, 19 RD missense mutations that had been identified in patients were functionally characterized. Nine of these (I601F, L610S, A613T, D614G, I618T, L619S, H620P, G628R and L633P) resulted in aberrant processing. No or a very small number of functional CFTR proteins will therefore appear at the cell membrane in cells expressing these mutants. These mutations were clustered in the N-terminal part of the RD, suggesting that this subdomain has a folding pattern that is very sensitive to amino acid changes. Mutations that caused no aberrant processing were further characterized at the electrophysiological level. First, they were studied at the whole cell level in Xenopus laevis oocytes. Mutants that induced a whole cell current that was significantly different from wild-type CFTR were subsequently analysed at the single channel level in COS1 cells transiently expressing the different mutant and wild-type proteins. Three mutant chloride channels, G622D, R792G and E822K CFTR, were characterized by significantly lower intrinsic chloride channel activities compared with wild-type CFTR. Two mutations, H620Q and A800G, resulted in increased intrinsic chloride transport activities. Finally, T665S and E826K CFTR had single channel properties not significantly different from wild-type CFTR.  相似文献   

12.
As a step in the design of directed toxins, aimed at cells that overexpress HER receptors, particularly breast carcinoma cells, we studied the properties of a chimera of diphtheria toxin (DT) and heregulin beta1. The EGF-like growth hormone heregulin is a ligand for the HER3 and HER4 receptors and their heterodimers with HER2. The 60-residue EGF-like domain (hrg) of heregulin elicits a biological response and binds to these receptors primarily through its N terminus. We tested a fusion protein in which hrg replaces the C-terminal receptor-binding domain of DT (DT(389)hrg) and an alternative design in which this domain is fused to the N terminus of DT(389). Of those two constructs, the N-terminal fusion was not active as a directed toxin but elicited a growth response. The C-terminal fusion of hrg to DT(389) yielded a functional toxin and showed cell line specific cytotoxicity that is consistent with heregulin specificity. The binding of hrg to its cognate receptor is not impaired as shown by receptor activation, direct binding, and competition with free hrg. Cytotoxicity is dependent on high-affinity binding of DT(389)hrg to HER3 and HER4 receptors and is not mediated by HER2 overexpression alone. For those cell lines exhibiting high-affinity binding sites, the level of cytotoxicity correlates with the rate of internalization. Thus DT(389)hrg chimeras offer a possible avenue toward directed toxins against cells that overexpress HER receptors.  相似文献   

13.
Radiochemotherapy-resistant blasts commonly cause treatment failure in acute myeloid leukemia (AML), and their resistance is due, in part, to overexpression of multidrug resistance (mdr) proteins. We reasoned that targeted delivery of protein synthesis inactivating toxins to leukemic blasts would reduce the cellular concentrations of relatively short half-life resistance proteins and sensitize the cells to cytotoxic drugs. To test this hypothesis, we employed human granulocyte-macrophage colony-stimulating factor fused to truncated diphtheria toxin (DT388-GMCSF). The human AML cell line HL60 and its vincristine-resistant sublines, HL60Vinc and HL60VCR, were incubated in vitro for 24 h with varying concentrations of toxin. Doxorubicin was added for an additional 24 h, and cell cytotoxicity was assayed by thymidine incorporation and colony formation in semisolid medium. DT388-GMCSF sensitized HL60Vinc and HL60VCR but not HL60 to doxorubicin. Combination indices for three log cell kill varied from 0.2 to 0.3. In contrast, pretreatment with doxorubicin followed by toxins failed to show synergy. At least in the case of the vincristine-resistant cell lines, modulation of drug resistance correlated with reduction in membrane P-glycoprotein concentrations based on immunoblots with C219 antibody, flow cytometry with MRK16 antibody, and cell uptake of doxorubicin. These observations suggest clinical trials of combination therapy may be warranted in patients with refractory AML. Further, targeted toxins may represent a novel class of cell-specific modulators of drug resistance for a number of malignancies.  相似文献   

14.
We have studied the effects of single charged residues on the position of a model transmembrane helix in the endoplasmic reticulum membrane using the glycosylation mapping technique. Asp and Glu residues cause a re-positioning of the C-terminal end of the transmembrane helix when placed in the one to two C-terminal turns but not when placed more centrally. Arg and Lys residues, in contrast, have little effect when placed in the two C-terminal turn but give rise to a more substantial shift in position when placed 9-11 residues from the helix end. We suggest that this difference between the effects of positively and negatively charged residues can be explained by the so-called snorkel effect, i.e. that the very long side-chains of Arg and Lys can reach up along the transmembrane helix to allow the terminal, charged moiety to reside in the lipid headgroup region while the Calpha of the residue is positioned well below the membrane/water interface.  相似文献   

15.
Many retroviruses, including bovine leukemia virus (BLV), contain a highly conserved region located about 40 amino acids downstream from the fusion peptide within the sequence of the external domain of the transmembrane (TM) protein. This region is notably thought to be involved in the presentation of the NH2-terminal peptide to allow cell fusion. By using hydrophobic cluster analysis and by analogy with the influenza A hemagglutinin structures, the core of the TM structure including this particular region was predicted to consist, in the BLV and other retroviral envelope proteins, of an alpha-helix followed by a loop region, both docked against a subsequent alpha-helix that forms a triple-stranded coiled coil. The loop region could undergo, as in hemagglutinin, a major refolding into an alpha-helix integrating the coiled coil structure and putting the fusion peptide to one tip of the molecule. Based on this model, we have identified amino acids that may be essential to the BLV TM structure, and a series of mutations were introduced in the BLV env gene of an infectious molecular clone. A first series of mutations was designed to disturb the coiled coil structure (substitutions with proline residues), whereas others would maintain the general TM structure. When expressed by Semliki Forest virus recombinants, all the mutated envelope proteins were stable and efficiently synthesized in baby hamster kidney cells. Both proline-substituted and conservative mutants were strongly affected in their capacity to fuse to CC81 indicator cells. In addition, it appeared that the integrity of the TM coiled coil structure is essential for envelope protein multimerization, as analyzed by metrizamide gradient centrifugation. Finally, to gain insight into the role of this coiled coil in the infectious potential of BLV in vivo, the mutated TM genes were introduced in an infectious and pathogenic molecular clone and injected into sheep. It appeared that only the conservative mutations (A60V and A64S) allowed maintenance of viral infectivity in vivo. Since these mutations destroyed the ability to induce syncytia, we conclude that efficient fusion capacity of the recombinant envelopes is not a prerequisite for the infectious potential of BLV in vivo. Viral propagation of these mutants was strongly affected in some of the infected sheep. However, the proviral loads within half of the infected animals (2 out of 2 for A60V and 1 out of 4 for A64S) were close to the wild-type levels. In these sheep, it thus appears that the A60V and A64S mutants propagate efficiently despite being unable to induce syncytia in cell culture.  相似文献   

16.
The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile --> Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P = 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.  相似文献   

17.
Four different somatic mutations (F631C, T632I, D633E, and D633Y) in the putative 6th transmembrane helix of the human thyrotropin receptor (TSHR) were recently described in hyperfunctioning thyroid adenomas [Porcellini et al. (1994) J. Clin. Endocrinol. Metab. 79, 657-661]. We transiently expressed these mutant receptors in Cos-7 cells and measured [125I]TSH binding, basal and TSH-stimulated cAMP production, and phosphatidylinositol hydrolysis. The concentration of receptors expressed at the cell surface was lower for the mutants than for the wild type (WT) TSHR. Compared to the WT, all four mutant receptors caused a marked increase in basal cAMP levels, but did not increase basal production of inositol phosphates. This suggests that autonomous thyroid function and adenoma formation may be related to constitutive activation of the cAMP pathway alone. A cluster of conserved residues at the base of the 6th transmembrane helix of the TSHR and other glycoprotein hormone receptors appears important for maintaining an inactive receptor conformation.  相似文献   

18.
Glycophorin A forms homodimers through interaction of the single, helical transmembrane domains of the monomers. The dimers are stable in sodium dodecylsulfate (SDS), permitting a number of studies that have identified a critical motif of residues that mediates dimer formation. We have used analytical ultracentrifugation to measure the energy of dimerization in a non-denaturing detergent solution and have observed the changes in energy arising from two of the mutants previously studied. Use of the detergent pentaoxyethylene octyl ether (C8E5) is a great advantage, since its micelles are neutrally buoyant and the detergent allows a reversible association to occur between monomer and dimer states of the glycophorin A transmembrane helices during the time-scale of sedimentation equilibrium. Use of this detergent in analytical ultracentrifugation may enable a wide range of studies of molecular association events in membrane proteins. We find that the glycophorin A transmembrane helix dimerizes with a dissociation constant of 240(+/-50) nM, corresponding to a free energy of dissociation of 9.0(+/-0.1) kcal mol-1. Point mutants that were found to be disruptive in SDS (L75A, I76A) reduced the dimer affinity in the C8E5 detergent environment (Kd=1.7(+/-0.2) microM and 4.2(+/-0.9) microM, respectively). Thus, the earlier findings are placed on a quantitative, relative energy scale of association by our measurements. Molecular modeling and simulations suggest that the energy differences can be accounted for as changes in van der Waals interactions between helices.  相似文献   

19.
Diphtheria toxin (1.10(-1)-1.10(-6) Lf/ml) was found to inhibit neurite extension in chick embryo dorsal root ganglia in vitro. If the nerve growth factor (60 ng/ml) was added with toxin in culture media the diphtheria toxin effect was decreased and the neurite outgrowth was compared with control. Protective effect of nerve growth factor by influence of diphtheria toxin may be used in new principles of diphtheria treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号