首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Song YA  Hsu S  Stevens AL  Han J 《Analytical chemistry》2006,78(11):3528-3536
Efficient sample preparation tools are the key to measuring molecular signals in a complex biological system. A novel continuous-flow isoelectric point (pI)-based sorting technique has been developed for proteins and peptides in a microfluidic chip format. It can sort biomolecules at a relatively high flow rate of up to 10 microL/min and does not require carrier ampholytes, which can create molecular backgrounds for subsequent analysis. Furthermore, the electrophoretic field required to run the pI-based sorting is generated by the diffusion of buffer ions in situ, at the liquid junction between two laminar flows within the microfluidic channel. Utilizing the diffusion potential in combination with a pH difference between the buffers, we demonstrated a separation of binary mixtures of pI markers and proteins without applying any external field. The sorting resolution and its efficiency are sufficiently high for sample preparation and could be further improved by optimizing buffers or with an additional transverse electric field. Once fully developed, it can potentially be a pI-based sample fractionation tool for proteomic analysis of complex biomolecule samples.  相似文献   

2.
To evaluate the accuracy ofisoelectric point determination by capillary isoelectric focusing, the pI values of nine proteins and a peptide, the pI values of which had been determined by other methods and ranging pI 3.55-9.60, were determined by capillary isoelectric focusing by cofocusing of recently developed peptide pI markers ranging 3.38-10.17, and the consistency of the pI values was examined. Isoelectric focusing was carried out in neutral polymer-coated capillaries, and the pH gradient was mobilized by pressure toward the cathode, to detect samples with absorption at 280 nm at a fixed detection point. Carrier ampholytes from two different suppliers and in different pH ranges were used. The sharp peaks of the highly pure peptide pI markers greatly facilitated the unambiguous identification of the peaks. When a carrier ampholyte ranging over the acidic side was used, the detection of acidic pI samples was anomalously delayed. This could be partly mitigated by reducing the viscosity of the anode solution in comparison with the pH gradient formed in the capillary. Since the detection times vs the pH relationships were not linear in most cases, the use of a linear calibration line over an entire pH gradient would be erroneous. Instead, the pI values of samples were calculated by assuming a linear relation for pH against detection time between two flanking marker peptides. Close agreement between the pI values, determined by capillary isoelectric focusing, and the reference values of the samples was observed within an average difference range of 0.04-0.08 pH unit with a sample consumption of 10-100 ng within 30-60 min. Some carrier ampholytes were preferentially more effective at either the acidic or the basic side of the pH gradient. For confirmation of the completion of focusing, the use of two different focusing times is recommended.  相似文献   

3.
In this work, we introduce microscale isoelectric fractionation (μIF) for isolation and enrichment of molecular species at any desired location in a microfluidic chip. Narrow pH-specific polyacrylamide membranes are photopatterned in situ for customizable device fabrication; multiple membranes of precise pH are easily incorporated throughout existing channel layouts. Samples are electrophoretically driven across the membranes such that charged species, for example, proteins and peptides, are rapidly discretized into fractions based on their isoelectric points (pI) without the use of carrier ampholytes. This format makes fractions easy to compartmentalize and access for integrated preparative or analytical operations on-chip. We present and discuss the key design considerations and trade-offs associated with proper system operation and optimal run conditions. Efficient and reproducible fractionation of model fluorescent pI markers and proteins is achieved using single membrane fractionators at pH 6.5 and 5.3 from both buffer and Escherichia coli cell lysate sample conditions. Effective fractionation is also shown using a serial 3-membrane fractionator tailored for isolating analytes-of-interest from high abundance components of serum. We further demonstrate that proteins focused in pH specific bins can be rapidly and efficiently transferred to another location in the same chip without unwanted dilution or dispersive effects. μIF provides a rapid and versatile option for integrated sample prep or multidimensional analysis, and addresses the glaring proteomic need to isolate trace analytes from high-abundance species in minute volumes of complex samples.  相似文献   

4.
Mitochondria are highly heterogeneous organelles that likely have unique isoelectric points (pI), which are related to their surface compositions and could be exploited in their purification and isolation. Previous methods to determine pI of mitochondria report an average pI. This article is the first report of the determination of the isoelectric points of individual mitochondria by capillary isoelectric focusing (cIEF). In this method, mitochondria labeled with the mitochondrial-specific probe 10-N-nonyl acridine orange (NAO) are injected into a fused-silica capillary in a solution of carrier ampholytes at physiological pH and osmolarity, where they are focused then chemically mobilized and detected by laser-induced fluorescence (LIF). Fluorescein-derived pI markers are used as internal standards to assign a pI value to each individually detected mitochondrial event, and a mitochondrial pI distribution is determined. This method provides reproducible distributions of individual mitochondrial pI, accurate determination of the pI of individual mitochondria by the use of internal standards, and resolution of 0.03 pH units between individual mitochondria. This method could also be applied to investigate or design separations of organelle subtypes (e.g., subsarcolemmal and interfibrillar skeletal muscle mitochondria) and to determine the pIs of other biological or nonbiological particles.  相似文献   

5.
Extensive prefractionation is now considered to be a necessary prerequisite for the comprehensive analysis of complex proteomes where the dynamic range of protein abundances can vary from approximately 10(6) for cells to approximately 10(10) for tissues such as blood. Here, we describe a high-resolution 2D protein separation system that uses a continuous free-flow electrophoresis (FFE) device to fractionate complex protein mixtures by solution-phase isoelectric focusing (IEF) into 96 well-defined pools, each separated by approximately 0.02-0.10 pH unit depending on the gradient created, followed by rapid (approximately 6 min per analysis) reversed-phase high-performance liquid chromatography (RP-HPLC) of each FFE pool. Fractionated proteins are readily visualized in a virtual 2D format using software that plots protein loci, pI in the first dimension and relative hydrophobicity (i.e., RP-HPLC retention time) in the second dimension. By coupling a diode-array detector in line with a multiwavelength fluorescence detector, separated proteins can be monitored in the RP-HPLC eluent by both UV absorbance and intrinsic fluorescence simultaneously from a single experiment. Triplicate analyses of standard proteins using a pH 3-10 gradient conducted over a 3-day period revealed a high system reproducibility with a SD of 0.57 (0.05 pH unit) within the FFE pools and 0.003 (0.18 s) for protein retention times in the second-dimension RP-HPLC step. In addition, we demonstrate that the FFE-IEF/RP-HPLC separation strategy can also be applied to complex mixtures of low molecular weight compounds such as peptides. With the facile ability to measure the pH of the isoelectric focused pools, peptide pI values can be estimated and used to qualify peptide identifications made using either MS/MS sequencing approaches or pI discriminated peptide mass fingerprinting. The calculated peak capacity of this 2D liquid-based FFE-IEF/RP-HPLC system is 6720.  相似文献   

6.
This paper reports a protocol that improves the resolving power of isoelectric focusing (IEF) in a polymeric microfluidic chip. This method couples several stages of IEF in series by first focusing proteins in a straight channel using broad-range ampholytes and then refocusing segments of the first channel into secondary channels that branch from the first one at T-junctions. Experiments demonstrate that several fluorescent proteins that had focused within a segment of the straight channel in the first stage were refocused at significantly higher resolution due to the shallower pH gradient and higher electrical field gradient. Two variants of green fluorescent protein from the second-stage IEF fractionation were further separated in a third stage. Three stages of IEF were completed in less than 25 min at electric field strengths ranging from 50 to 214 V/cm.  相似文献   

7.
A poly(dimethylsiloxane) microfluidic chip-based cartridge is developed and reported here for protein analysis using isoelectic focusing (IEF)-whole-channel imaging detection (WCID) technology. In this design, commercial dialysis membranes are integrated to separate electrolytes and samples and to reduce undesired pressure-driven flow. Fused-silica capillaries are also incorporated in this design for sample injection and channel surface preconditioning. This structure is equivalent to that of a commercial fused-silica capillary-based cartridge for adapting to an IEF analyzer (iCE280 analyzer) to perform IEF-WCID. The successful integration of dialysis membranes into a microfluidic chip significantly improves IEF repeatability by eliminating undesired pressure-driven hydrodynamics and also makes sample injection much easier than that using the first-generation chip as reported recently. In this study, two microfluidic chips with a 100-microm-high, 100-microm-wide and a 200-microm-high, 50-microm-wide microchannel, respectively, were applied for qualitative and quantitative analysis of proteins. The mixture containing six pI markers with a pH range of 3-10 was successfully separated using IEF-WCID. The pH gradient exhibited a good linearity by plotting the pI value versus peak position, and the correlation coefficient reached 0.9994 and 0.9995 separately for the two chips. The separation of more complicated human hemoglobin control sample containing HbA, HbF, HbS, and HbC was also achieved. Additionally, for the quantitative analysis, a good linearity of IEF peak value versus myoglobin concentration in the range of 20-100 microg/mL was obtained.  相似文献   

8.
An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.  相似文献   

9.
We present the first successful adaptation of immobilized pH gradients (IPGs) to the microscale (muIPGs) using a new method for generating precisely defined polymer gradients on-chip. Gradients of monomer were established via diffusion along 6 mm flow-restricted channel segments. Precise control over boundary conditions and the resulting gradient is achieved by continuous flow of stock solutions through side channels flanking the gradient segment. Once the desired gradient is established, it is immobilized via photopolymerization. Precise gradient formation was verified with spatial and temporal detection of a fluorescent dye added to one of the flanking streams. Rapid (<20 min) isoelectric focusing of several fluorescent pI markers and proteins is demonstrated across pH 3.8-7.0 muIPGs using both denaturing and nondenaturing conditions, without the addition of carrier ampholytes. The muIPG format yields improved stability and comparable resolution to prominent on-chip IEF techniques. In addition to rapid, high-resolution separations, the reported muIPG format is amenable to multiplexed and multidimensional analysis via custom gradients as well as integration with other on-chip separation methods.  相似文献   

10.
We have evaluated the use of free-flow electrophoresis, an emerging separation method for preparative isoelectric focusing of complex peptide mixtures, as a tool for high-throughput tandem mass spectrometry-based proteomic analysis. In this study, we investigated the ability of free-flow electrophoresis to resolve and fractionate complex peptide mixtures and also the effectiveness of using peptide isoelectric point in conjunction with peptide match probability scoring in sequence database searching. As a model system for this study, we analyzed a chromatin-enriched fraction from the yeast Saccharomyces cerevisiae. This mixture was fractionated using preparative isoelectric focusing by free-flow electrophoresis, followed by online capillary liquid chromatography electrospray tandem mass spectrometry and sequence database searching. Our results demonstrate that (1) FFE effectively resolves and fractionates complex peptide mixtures on the basis of peptide isoelectric point and (2) the introduction of peptide pI is effective in minimizing both false positive and false negative sequence matches in sequence database searching of tandem mass spectrometry data.  相似文献   

11.
Nineteen fluorescent pH standards or pI markers ranging pH 3.64-10.12 were developed for use in capillary isoelectric focusing using laser-induced fluorescence detection. Tetra- to tridecapeptides containing one cysteine residue were designed to focus sharply at their respective isoelectric points by including amino acids that contain charged side chains, the pKa values of which are close to the corresponding pI values. An iodoacetylated derivative of tetramethylrhodamine was coupled to the thiol group of cysteine to yield fluorescent pI markers. The pI values of the labeled peptides were precisely determined after isoelectric focusing on polyacrylamide gel slabs by direct measurement of the pH of the focused bands. The markers were subjected to capillary isoelectric focusing for 10-15 min in coated capillaries under conditions of low electroosmosis and were detected by means of a scanning laser-induced fluorescence detector down to a level of subpicomolar range. The markers permitted the calibration of a wide-range pH gradient formed in a capillary by fluorescence detection for the first time and should facilitate the development of highly sensitive analytical methods based on a combination of capillary isoelectric focusing and laser-induced fluorescence detection.  相似文献   

12.
Capillary zone electrophoresis and carrier ampholytes based capillary electrophoresis have been used as a second separation step to Off-Gel isoelectric focusing for the analysis of complex peptide mixtures. A tryptic digest of four proteins (bovine serum albumin, beta-lactoglobulin, horse myoglobin, cytochrome c) has been chosen as a peptide test mixture. After assessment of different modes of capillary electrophoresis as a second dimension to Off-Gel isoelectric focusing, the optimized two-dimensional platforms provide a degree of orthogonality comparable to state-of-the-art multidimensional liquid chromatography systems as well as a practical peak capacity above 700.  相似文献   

13.
In order to ensure a stable and efficient separation in microfluidic free-flow electrophoresis (FFE) devices, various methods and chips have been presented until now. A major concern hereby is the generation of gas bubbles caused by electrolysis and the resulting disturbances in the position of the separated analyte lanes. Instable lane positions would lead to a decreased resolution in sample collection over time which certainly would be problematic when incorporating a stationary detector system. In contrast to our previous publications, in which we implemented laborious semipermeable membranes to keep bubbles outside the separation region, here we describe an electrochemical approach to suppress the electrolysis of water molecules and therefore bubble formation. This approach allowed a simpler and additionally a closed chip device with integrated platinum electrodes. With the use of this chip, the successful separation of three fluorescent compounds was demonstrated. Quinhydrone, which is a complex of hydroquinone and p-benzoquinone, was added only to the local flow streams along the electrodes, preventing mixing with the separation media and sample. The electrical current was generated via the oxidization and reduction of hydroquinone and p-benzoquinone up to a certain limit of the electrical current without gas formation. The separation stability was investigated for the chip with and without quinhydrone, and the results clearly indicated the improvement. In contrast to the device operating without quinhydrone, a 2.5-fold increase in resolution was achieved. Furthermore, separation was demonstrated within tens of milliseconds. This chemical approach with its high miniaturization possibilities offers an interesting alternative, in particular for low-current miniaturized FFE systems, in which large and open electrode reservoirs are not tolerable.  相似文献   

14.
As a part of an ongoing investigation of the use of isoelectric focusing (IEF) in microfluidic devices, pH gradients were electrochemically formed and optically quantified in microfluidic channels using acid-base indicators. The microchannels consisted of two parallel 40-mm-long electrodes with an interelectrode gap of 2.54 mm; top and bottom transparent windows were separated by 0.2 mm. Gradients in pH were formed as a result of the electrochemical decomposition of water at an applied potential not higher than 2.5 V to avoid generation of gas bubbles. Solutions contained low concentrations of a single buffer. The stability of the pH gradients and their sensitivity to changes in initial conditions were investigated under static (nonflow) conditions. Isoelectric focusing of sample biological analytes, bovine hemoglobin and bovine serum albumin, was performed to illustrate the potential of "microfluidic transverse IEF" for use in continuous concentration and separation systems.  相似文献   

15.
This work presents the first implementation of cascaded stages for a microfabricated free-flow isoelectric focusing (FF-IEF) device. Both analytical and computational models for IEF suggest device performance will be improved by utilizing multiple stages to reduce device residence time. These models are shown to be applicable by using focusing of small IEF markers as a demonstration. We also show focusing of fluorescently tagged proteins under different channel geometries, with the most efficient focusing occurring in the cascaded design, as predicted by theory. An additional aim of this work is to demonstrate the compatibility of cascaded FF-IEF with common bioanalytical tools. As an example, outlet fractions from cascaded FF-IEF were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Processing of whole cell lysate followed by immunoblotting for cell signaling markers demonstrates the reduction of albumin from samples, as well as the enrichment of apoptotic markers.  相似文献   

16.
Wang YC  Choi MH  Han J 《Analytical chemistry》2004,76(15):4426-4431
Methods are described to achieve more efficient multidimensional protein separation in a microfluidic channel. The new methods couple isoelectric focusing (IEF) with high ionic strength electrophoretic separations by active microvalve control in a microchip. Several experiments demonstrating independent 2D separation were performed, and critical parameters for optimal chip performance were identified, including channel passivation, electroosmosis control, and IEF linearity control. This strategy can be used for integration of different heterogeneous separation techniques, such as IEF, capillary electrophoresis, and liquid chromatography. This new device can be ideal for preseparation and preconcentration of complex biomolecule samples for a streamlined biomolecule analysis using mass spectrometry.  相似文献   

17.
A new form of microchip isoelectric focusing that allows efficient coupling with pretreatment processes is reported. The sample is conveyed in a carrier ampholyte solution to the separation channel that is connected at both ends by two V-shaped lead channels, which supply electrode solutions to the connection point and complete the electrical connection to off-chip electrodes. The relatively high electric conductivity of the electrode solutions compared with that of the pH gradient enables focusing with a 2% loss of applied voltage at the electrodes using the lead channels. A glass microchip was constructed specifically for this configuration. The channel wall was coated with polydimethylacrylamide, and the IEF chip was operated in a chip holder equipped with on-chip connector valves. A plug of fluorescence-labeled peptide p I markers with p I values ranging from 3.64 to 9.56 with carrier ampholyte solution (pH 3-10) was introduced into the separation channel. When the plug reached the channel segment (24 mm in length) between the connection points with the electrolyte lead channels, isoelectric focusing was started after filling the lead channels with electrolyte solutions. The peptide markers were observed using scanning fluorescence detection. The entire range of the pH gradient was established in the segment after approximately 2 min. Isoelectric focusing of three consecutively injected sample plugs containing different p I markers was demonstrated.  相似文献   

18.
High-resolution capillary isoelectric focusing separations of complex protein mixtures have been obtained for cellular lysates of Saccharomyces cerevisiae, Eschericia coli, and Deinococcus radiodurans. High quality separations are shown to be achievable for total protein concentrations of < 0.1 mg/mL. The separation reproducibility was examined, and the influence of the capillary inner wall coating on resolution investigated using fusedsilica capillaries coated with various hydrophilic polymers including hydroxypropyl cellulose, poly(vinyl alcohol), and linear polyacrylamide. Proteins having an isoelectric point (pI) difference of 0.004 are shown to be separated using a linear carrier ampholyte (linear pH gradient between two electrodes) of 3-10. Approximately 45 discrete peaks in the pI range of 5-7 were obtained for S. cerevisiae, approximately 80 peaks in the pI range of 4.5-8.5 for E. coli, and approximately 210 peaks in the pI range of 3-8.8 for D. radiodurans.  相似文献   

19.
Dynamic isoelectric focusing is a new technique that is related to capillary isoelectric focusing but uses additional high-voltage power supplies to provide control over the shape of the electric field within the capillary. Manipulation of the electric field changes the pH gradient, enabling both the location and width of the focused protein bands to be controlled. The proteins can be migrated to a designated sampling point while remaining focused, where they can be collected for further analysis. This ability to collect and isolate the protein bands while maintaining a high peak capacity demonstrates that dynamic isoelectric focusing has great potential as a first dimension in a multidimensional separation system. Dynamic isoelectric focusing can achieve a peak capacity of over 1000, as shown by both mass spectrometry analysis and direct imaging.  相似文献   

20.
This paper reports the application of ampholyte-based isoelectric focusing in poly(dimethylsiloxane) (PDMS) using methylcellulose (MC) to reduce electroosmosis and peak drift. Although the characteristics of PDMS make it possible to fabricate microfluidic chips using soft lithography, unstable electroosmotic flow (EOF) and cathodic drift are significant problems when this medium is used. This paper demonstrates that EOF is greatly reduced in PDMS by applying a dynamic coat of MC to the channel walls and that higher concentrations of MC can be used to increase the viscosity of the electrode solutions in order to suppress pH gradient drift and reduce "compression"of the pH gradient. To illustrate the effect of MC on performance, several fluorescent proteins were focused in microchip channels 5 microm deep by 300 microm wide by 2 cm long in 3-10 min using broad-range ampholytes at electric field strengths ranging from 25 to 100 V/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号