首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以尿素(UA)和TiO_2-P_(25)为原料,经浸渍-焙烧制备出N-TiO_2,经水热法合成出CdS/N-TiO_2复合光催化剂。催化剂的分析表征结果表明,N进入TiO_2的晶格,占据了O的空位,由于N和O的电负性不同,使Ti周围的电子云密度变化;掺杂N后,TiO_2晶型未发生变化,电荷分离效率提高,吸收边发生红移;CdS/N-TiO_2复合光催化剂是CdS与N-TiO_2光学性质的综合表现,扩展了TiO_2的光响应范围,提高了电子-空穴的分离效率,颗粒分布均匀,有利于电荷传输,光催化活性提高,可见光催化分解硫化氢制氢速率可达10327.4μmol/(h·g),高于未掺杂改性的CdS/TiO_2。  相似文献   

2.
以柠檬酸(CA)和TiO_2-P25为原料,经浸渍-焙烧制备出C-TiO_2,再经水热法合成出Cd S/C-TiO_2复合光催化剂。催化剂的分析表征结果表明,C取代了TiO_2晶格中的Ti原子,形成了Ti-O-C的结构;掺杂C后,晶型未发生变化,电荷分离效率提高,TiO_2的吸收边发生红移。可见光催化分解硫化氢制氢结果表明,Cd S/C-TiO_2催化性能明显改善,产氢速率可达10291.7μmol/(h·g),高于未掺杂改性的Cd S/TiO_2。  相似文献   

3.
以CdCl2·2.5H2O,Na2S·9H2O和自制的TiO2纳米颗粒为原料,在微波反应器内合成了掺杂CdS的TiO2纳米管复合催化剂。通过高分辨透射电镜观察,发现采用此方法可合成形貌完好纳米管,管子内径为5~10nm,长度为150~200nm。X射线衍射表征结果显示合成的复合催化剂主要为锐钛矿型的多晶态TiO2纳米管,并且CdS的掺杂造成TiO2晶体变形,可能是CdS与TiO2之间存在相互作用和CdS部分进入TiO2晶格内部。X射线光电子能谱对该催化剂各元素电子环境进行了分析。紫外可见吸收光谱发现所制备的复合催化剂产生明显的红移现象,能吸收可见光。该催化剂在可见光下催化分解纯水制氢的催化性能结果表明,掺杂CdS(1.96%(wt))的TiO2纳米管催化剂能分解纯水产生氢气,产氢速率为12.9μmol·(h·g)-1,而纯CdS纳米颗粒、纯TiO2纳米管以及这两者物理混合的催化剂则检测不到氢气的产生。通过考察不同CdS的掺杂量,发现CdS质量分数为1.96%的CdS-TiO2NT催化剂的可见光下催化活性最好。  相似文献   

4.
以钛酸四丁酯,乙酸镉为前驱体,以Na BH4为还原剂,采用溶胶凝胶辅助溶剂热法制备了负载CdS的还原TiO_2光催化剂(CdS/r-TiO_2),并运用扫描电子显微镜、X射线衍射仪、紫外可见漫反射吸收光谱仪和X射线光电子能谱仪等方法探讨了CdS负载量及TiO_2还原对光催化分解H2S制氢的影响。结果表明:负载CdS可使催化剂的光响应区间拓展至可见光区,Na BH4还原可进一步增加样品对可见及红外光的吸收性能。负载CdS增加了催化剂分解H2S制氢的反应活性位点,并有利于光生载流子的分离传输,使材料的光催化活性大幅增加。当CdS负载量为5%时,CdS/rTiO_2在全光谱光照下的产氢速率达2.4 mmol·h-1·g-1。  相似文献   

5.
利用溶胶-凝胶法制备TiO_2,并进行非金属掺杂和金属掺杂制改性,利用红外分析(FT-IR)和BET对制备复合材料进行催化剂活性表征。考察催化剂用量、煅烧温度、金属掺杂质量分数和牺牲剂对N-TiO_2在可见光下对水和醇产氢速率的影响。实验结果表明:在过渡金属中,掺杂Sn-N-TiO_2对水和醇产氢催化效果最好。在反应体系中在Sn-N-TiO_2以及牺牲剂的作用下,以煅烧温度为400℃,添加催化剂量为0.5 g,金属掺杂为0.5%时,产氢速率最好为68.18μmol/(m~3·min·gcat)。  相似文献   

6.
采用共沉淀与浸渍法制备了不同SnO_2掺杂量(摩尔分数1%~7%,以TiO_2计,下同)的SO42-/TiO_2-SnO_2固体酸催化剂,利用N2-吸附脱附、FTIR、NH3-TPD对催化剂的结构和性质进行了表征。结果表明:SnO_2掺杂可以有效改善催化剂的比表面积与孔结构,有利于载体与SO42-形成配位结构,显著增加了催化剂酸性中心数量,从而增强了催化性能。SnO_2掺杂量为5%的SO42-/TiO_2-SnO_2固体酸催化剂催化丙烯酸与莰烯酯化反应,催化剂用量为10%(占反应物的质量分数,下同),反应温度为70℃,丙烯酸与莰烯物质的量比为1.3︰1时,莰烯的转化率为81.9%,丙烯酸异冰片酯选择性为98.5%,较SO42-/TiO_2显示出更高的反应活性与稳定性。  相似文献   

7.
以钛酸丁酯、硝酸锌和硫脲为原料,采用溶胶-凝胶法制备了不同n(Zn)/n(Ti)的Zn、S共掺杂的TiO_2光催化剂。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、激光拉曼光谱(FT-Raman)、紫外-可见漫反射(UV/vis DRS)等对催化剂的结构和光吸收性能进行了表征。结果显示,Zn和S在TiO_2纳米颗粒中均匀分布,Zn以ZnO形式存在,而S以SO2-4形式存在,共掺杂未改变TiO_2的锐钛矿结构。Zn和S共掺杂后,TiO_2纳米颗粒的晶粒变小。由于Zn的掺杂,在TiO_2禁带中产生了杂质能级,降低了纳米材料的禁带宽度,抑制了光生电子和空穴的复合,从而提高了光吸收效率。而S的掺杂,增加了催化剂表面的酸性位,有利于光催化活性的提高。掺杂了Zn、S的TiO_2光催化甘油水溶液制氢的效率远高于纯TiO_2。在氙灯照射下,3%Zn、S共掺杂催化剂的产氢速率可达到150.5μmol/(h·g)。  相似文献   

8.
崔宇 《安徽化工》2018,44(3):40-44
随着环境和能源问题越来越凸显,开发价格低廉、性能优异的新型光催化剂越来越有实际意义。将直径为5nm的CdS量子点与廉价铁硫化合物结合,制备出新型的能够在可见光下分解水的复合光催化剂,其最优化产氢速率高达519.55μmol h~(-1),高于同条件下CdS/Pt催化剂。  相似文献   

9.
采用溶胶-凝胶法制备了纳米TiO_2,并通过贵金属沉积法对其进行Pt掺杂改性,利用XRD、TEM对催化剂进行表征,结果发现,Pt/TiO_2平均晶粒约12 nm。通过Pt的掺杂改性使光催化总产氢量得到明显提高,Pt的掺杂量为1%、质量浓度为0.20 g/L时,Pt/TiO_2光催化产氢性能最好。用乙酸、丙酸、正丁酸为废水有机酸的牺牲剂,考察其初始浓度对光催化产氢性能的影响,乙酸、丙酸初始浓度为0.12 mol/L时,总产氢量达到最高,此时每摩尔乙酸、丙酸转化为氢气的量分别为4 288、3 710 mL;正丁酸初始浓度为0.16 mol/L时,总产氢量达到最高,此时每摩尔正丁酸转化为氢气的量为1 384 mL。  相似文献   

10.
通过光催化分解水制氢是缓解当前能源短缺和环境污染问题的最具前景途径之一。在提高半导体光催化剂性能的各种途径中,助催化剂修饰是一种十分有效的策略。本工作通过油浴和溶剂热反应合成了MoS2纳米片紧密包覆于CdS纳米颗粒表面的CdS-MoS2复合光催化剂,其中具有强可见光吸收能力和合适质子还原导带电势的CdS和具有优良析氢活性的MoS2分别为光吸收体和助催化剂。利用XRD,TEM,HRTEM和XPS等测试表征了光催化剂的组成、物相以及微观结构等信息。在可见光(λ>400 nm)辐照下,5%MoS2负载的CdS(CdS-MoS2-5%)表现出了最佳的产氢速率29.62 mmol·g-1·h-1,明显高于Pt修饰的CdS以及大部分文献记载的CdS复合光催化剂。研究结果表明,出色的可见光俘获能力、丰富的S■活性位点以及提高的载流子分离效率是CdS-MoS2复合光催化剂具有优良产氢活性的主要原因。  相似文献   

11.
采用水热法制备出系列Cu2+掺杂的ZnIn2S4多孔光催化剂。通过XRD、SEM、UV-Vis、XPS等分析手段对催化剂进行了表征,考察了掺杂Cu2+浓度对多孔ZnIn2S4光催剂的形貌结构和可见光催化产氢性能的影响。实验结果表明,Cu2+掺杂会影响催化剂的晶体结构及其微观形貌,掺杂后的Zn In2S4光催化剂产氢活性显著提高,其中Cu2+(0.1%)-Zn In2S4光催化剂表现出最优产氢活性,产氢速率达到1967.4μmol/(h·g)。  相似文献   

12.
采用溶胶-凝胶-沉淀的方法,制备出CdS/ZnO复合光催化剂,并通过XRD和UV—Vis漫反射光谱对催化剂进行了表征。考察了ZnO制备过程中胶溶剂种类、CdS物质的量百分含量(X)和焙烧温度(T)对CdS/ZnO复合光催化剂的性质与光催化分解硫化氢制氢性能的影响。实验结果表明:CdS/ZnO复合催化剂中,ZnO和CdS为六方晶系,UV—Vis吸收边有不同程度的红移。当以氨水为胶溶剂,T为400℃,x为50时,制备出的CdS/ZnO复合催化剂,其光催化分解硫化氢制氢速率最大,可达35mmol/g·h。  相似文献   

13.
在低温SCR过程中,还原性气体NH_3能够与SO_2及H_2O生成硫酸氢铵堵塞催化剂孔道,覆盖活性位点,导致催化活性降低。通过对催化剂进行硫酸氢铵预负载,研究V_2O_5/TiO_2催化剂中Sb_2O_3掺杂对化学相互作用、硫酸氢铵的分解行为以及低温下催化剂抗硫抗水性的影响。结果表明,硫酸氢铵与催化剂之间存在化学相互作用,助剂Sb_2O_3可以提高SO■中S原子的电子云密度,有利于硫酸氢铵中的+6价S原子被还原为SO_2中的+4价S原子。因此,催化剂中的助剂Sb_2O_3可以促进硫酸氢铵中SO_2的释放,同时助剂Sb_2O_3可以降低催化剂表面硫酸氢铵的分解温度,进而促进催化剂表面硫酸氢铵的分解。在V_2O_5/TiO_2催化剂中掺杂助剂Sb_2O_3可以明显提高催化剂的抗硫抗水性能,为实现低温SCR的工业化应用提供了理论基础。  相似文献   

14.
高效利用太阳能,拓展二氧化钛在可见光下的光催化应用,成为目前研究的热点之一。简要综述了近年来N掺杂改性TiO_2获得的可见光响应N-TiO_2催化剂的研究现状,从制备方法、氮活性物种形式和光催化应用方面进行了归纳和总结。  相似文献   

15.
以氟化铵、硝酸铕和钛酸四丁酯为原料,采用溶胶-水热法制备出N、F和Eu~(3+)共掺杂可见光响应纳米TiO_2催化剂。通过X射线衍射(XRD)对其晶型和形态进行表征,催化剂呈锐钛矿型TiO_2纳米晶体,且N、F和Eu~(3+)的共掺杂有效抑制了纳米颗粒的增长。研究发现,当氮氟掺杂量为4.0%,铕为1.0%,煅烧温度为400℃时,纳米催化剂可见光催化性能最好。在催化剂用量为1.5 g/L,溶液pH值为2.45,苯酚初始浓度为40 mg/L条件下,氙灯模拟可见光照射2 h,苯酚的降解率接近100%。非金属N、F和金属Eu~(3+)的共掺杂,能有效提高TiO_2纳米粉体光催化活性。  相似文献   

16.
采用溶胶-凝胶法制备Cu/TiO_2光催化剂,在汞灯下光催化降解酸性品红溶液。探讨了金属掺杂量,煅烧温度、煅烧时间、催化剂的用量以及溶液初始浓度对光催化降解效率的影响。结果表明,Cu掺杂量为1.5%(摩尔分数)、煅烧温度600℃,煅烧时间2h的制备条件下,催化剂的最佳用量为0.1%(g/mL)对酸性品红染料初始浓度为10mg/L的降解率较高,光照60min后品红降解率可达74.3%;掺杂1.5%(摩尔分数)的Cu/TiO_2催化剂的光催化活性高于TiO_2,其光催化降解率较TiO_2提高了21%。Cu的掺杂可以显著提高TiO_2的光催化效率。  相似文献   

17.
《应用化工》2022,(4):653-656
采用溶胶-凝胶法制备Cu/TiO_2光催化剂,在汞灯下光催化降解酸性品红溶液。探讨了金属掺杂量,煅烧温度、煅烧时间、催化剂的用量以及溶液初始浓度对光催化降解效率的影响。结果表明,Cu掺杂量为1.5%(摩尔分数)、煅烧温度600℃,煅烧时间2h的制备条件下,催化剂的最佳用量为0.1%(g/mL)对酸性品红染料初始浓度为10mg/L的降解率较高,光照60min后品红降解率可达74.3%;掺杂1.5%(摩尔分数)的Cu/TiO_2催化剂的光催化活性高于TiO_2,其光催化降解率较TiO_2提高了21%。Cu的掺杂可以显著提高TiO_2的光催化效率。  相似文献   

18.
以溴代十六烷基吡啶(CPBr)为模板剂,采用水热法制备出系列Mn2+掺杂的ZnIn2S4多孔光催化剂.通过XHD、FESEM、UV-Vis、XPS等分析手段对催化剂进行了表征,考察了掺杂Mn2+浓度对多孔ZnIn2S4光催剂的形貌结构和可见光催化产氢性能的影响.实验结果表明,Mn2+掺杂影响催化剂的晶体结构及其微观形貌...  相似文献   

19.
通过水热法制备了系列具有可见光催化活性的Ni~(2+)掺杂Cd_(0.3)In_2S_4-Zn_(0.7)In_2S_4光催化剂,采用XRD、UV-Vis、SPS和SEM等分析手段对上述催化剂进行了表征。结果表明,Ni~(2+)掺杂后的催化剂具有良好的晶型、结构以及可见光吸收能力。考察Ni~(2+)掺杂量对分解H2S制氢性能的影响,实验结果表明,Ni(5wt%)-Cd_(0.3)In_2S_4/Zn_(0.7)In_2S_4表现出最佳的分解H_2S制氢性能,产氢速率可达3319μmol/(h·g)。  相似文献   

20.
La3+掺杂CdS/TiO2复合膜的制备及性能表征   总被引:4,自引:0,他引:4  
采用溶胶-凝胶和旋涂工艺在普通玻璃表面制备La3+掺杂CdS/TiO2薄膜,采用XRD和UV-VIS等测试手段研究了CdS复合量、La3+掺杂量、焙烧温度和镀膜层数对La3+掺杂CdS/TiO2薄膜的结构、光学性能及光催化性能的影响.结果表明,经过合理掺杂和复合技术制备的TiO2纳米复合膜具有比单独掺杂或复合薄膜更好的光催化能力.当CdS的复合量40%(CdS/TiO2摩尔比0.4)、La3+掺杂量0.5%(La3+/Ti4+摩尔比0.005)、焙烧温度600℃、膜层数为6时,薄膜在可见光区域具有良好的透过率,在太阳光下4 h对0.4 mg·L-1甲基蓝溶液的降解率可达到60%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号