首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实验研究硅胶对硝酸体系中Zr、Pu(Ⅳ)的静态吸附和动态吸附行为。在1.0~4.0mol/LHNO3中,硅胶对Zr的静态吸附容量(以干硅胶计)约为20mg/g,对Pu(Ⅳ)的吸附分配系数为0.7~1.4mL/g。随着料液酸度的降低,硅胶对Zr、Pu的吸附增加。动态吸附实验结果表明,进料酸度为2.0mol/LHNO3时,硅胶吸附柱的工作容量约为3.5倍柱体积。使用2mol/LHNO3淋洗液可将吸附Zr、Pu后的硅胶柱中的部分Zr、Pu洗脱,但洗脱不完全。用2倍柱体积的0.2mol/LH2C2O4可将硅胶吸附的Zr、Pu解吸下来。硅胶柱用0.2mol/LH2C2O4解吸后复用6次,Zr的穿透曲线位置相同。  相似文献   

2.
首先合成了双键改性的纤维状介孔二氧化硅纳米微球(F-SiO_2-K),将其分散在4-乙烯基吡啶(4-vinylpyridine,4-VP)或4-VP的甲醇溶液中,通过共辐射接枝的方法,制备了吡啶基改性纤维状介孔SiO_2纳米微球(F-SiO_2-VP)。热重分析结果表明,聚4-乙烯基吡啶(P(4-VP))在F-SiO_2微球上的接枝率随4-VP单体浓度和吸收剂量增加而增加,但随剂量率的增加先增大后减小。将F-SiO_2-VP微球分散在含有U(Ⅵ)的硝酸溶液中,测定了室温下微球对U(Ⅵ)的吸附容量,并对吸附动力学和吸附等温线进行了分析。结果表明,F-SiO_2-VP微球对U(Ⅵ)的吸附容量与硝酸浓度和P(4-VP)的接枝率有关。当硝酸浓度为5 mol/L,P(4-VP)的接枝率为16%时,对U(Ⅵ)的吸附容量最大,达到163 mg/g。该吸附过程符合准二级动力学模型,其吸附热力学则当U(Ⅵ)浓度低时符合Freundlich模型,而U(Ⅵ)浓度高时符合Langmuir等温吸附模型。  相似文献   

3.
设计合成具有较强铀酰离子结合能力、较快吸附动力学的多孔框架配合物对于海水中铀吸附具有重大的意义。利用对叔丁基磺酰基桥联杯[4]芳烃(H4TC4A SO2)、六水氯化钴和1,3 二(2H 四氮唑 5 基)苯(H2L)在溶剂热的条件下构筑了一例长方体状杯芳烃基多孔配位笼(Co16),并用于对海水中铀酰离子的吸附。对Co16吸附剂进行U(Ⅵ)吸附实验发现,Co16吸附剂在较宽的pH范围内对U(Ⅵ)具有优异的吸附能力,并在90 min内达到吸附平衡,且符合准二级动力学模型。吸附等温线较好地符合Langmuir模型,表明Co16吸附剂对U(Ⅵ)的吸附属于单层吸附,且对U(Ⅵ)的吸附容量高达54731 mg/g。热力学实验表明,Co16吸附剂对U(Ⅵ)的吸附属于自发吸热的行为。把该材料置于真实海水中20 d后,其在真实海水中的吸附容量可达488 mg/g。以上结果表明,Co16吸附剂在海水铀吸附方面具有巨大的应用潜力。  相似文献   

4.
研究了类普鲁士蓝吸附剂K2NiFe(CN)6(KNiFC)在室温离子液体(RTILs)中对Cs+的吸附,包括吸附动力学、吸附等温线、吸附机理,并且研究了配体N,N,N′,N′-四甲基丙二酰胺(TMMA)、N,N-二甲基甲酰胺(DMF)、亚甲基二磷酸四异丙酯(TIPMBP)以及共存离子U(Ⅵ)和Th(Ⅳ)对Cs+吸附的影响。结果显示:温度为298 K时,Cs+的饱和吸附量为40.3 mg/g;温度为338 K时,其饱和吸附量为49.2 mg/g;吸附平衡时间约为18 h。吸附可以很好地用准二级动力学描述,吸附反应为吸热反应。通过对吸附剂进行X射线光电子能谱法(XPS)表征,证明其吸附机理为阳离子交换机理。当Cs+、U(Ⅵ)或Th(Ⅳ)共同存在时,会发生吸附竞争。而当在Cs+、Th(Ⅳ)或U(Ⅵ)混合溶液中分别加入TMMA、DMF、TIPMBP后,Th(Ⅳ)几乎不被吸附,Cs+的吸附量不变;U(Ⅵ)吸附量很小,Cs+的吸附量变化不大。当离子液体中Cs+、Th(Ⅳ)或U(Ⅵ)共存时,可以通过加入配体来实现类普鲁士蓝KNiFC无机吸附剂对Cs+的选择性吸附。  相似文献   

5.
碳基吸附剂对氢同位素的吸附行为研究(Ⅱ)   总被引:1,自引:0,他引:1  
研究了液氮温度下活性炭(AC)、碳分子筛(601)和碳纳米纤维(CNF)对H2、D2的吸附等温线,采用2种Langmuir模型对它们吸附H2、D2的等温线进行了理论计算.研究结果表明:在液氮温度下,3种碳基吸附剂对氢同位素的吸附等温线遵从Langmuir 单分子层吸附模型,符合按活性点分类的定点吸附机制;吸附等温线可用Langmuir 多项式理论模型进行准确计算.  相似文献   

6.
硅基季铵化分离材料对Pu(Ⅳ)的吸附性能及机理研究   总被引:1,自引:0,他引:1  
研究了硅基季铵化分离材料(SiR4N)在硝酸溶液中对Pu(Ⅳ)的吸附性能和机理。结果表明,SiR4N对Pu(Ⅳ)的吸附等温线基本符合Langmuir吸附等温线,吸附为放热反应,ΔH=-7.23 kJ/mol。机理研究结果表明,分配比D与树脂功能基团SiR4N+的关系式为:lgD=3.43+1.74lgn(SiR4N+),其配位比接近于2,由此可推测SiR4N在硝酸溶液体系主要吸附的是[Pu(NO3)6]2-。  相似文献   

7.
以氨基化改性磁性纳米Fe_3O_4粒子为载体,将杯[4]芳烃胺肟衍生物进行磁性功能化改性,制备得到立体构象稳定、与UO_2~(2+)空间配位构型匹配的杯[4]芳烃胺肟衍生物磁性功能材料(MFM-AOCA)。并采用红外光谱、扫描电镜进行了结构表征。考察了溶液pH值、铀初始浓度、MFM-AOCA用量和吸附时间等因素对吸附的影响。结果表明:杯[4]芳烃胺肟衍生物磁性功能修饰后,具有较大的比表面积,其吸附铀的最佳条件是pH值为3.5、铀初始浓度为40 mg/L、吸附剂用量为40 mg和吸附时间为3.5 h。吸附动力学模型和吸附等温模型研究表明,MFM-AOCA对铀的吸附动力学过程符合准二级动力学模型,所得到的相关系数大于0.99;吸附等温线符合Langmuir等温线模型,其最大理论吸附量为141.28 mg/g。使用3种不同的解吸剂对MFM-AOCA解吸再生6次后,其对铀的吸附率均在80%以上,说明该MFMAOCA具有良好的再生性能。  相似文献   

8.
以钛酸钾(KTiO)为有效成分、聚丙烯腈(PAN)为基体,制备了聚丙烯腈基钛酸钾球形复合吸附剂(PAN-KTiO)。采用扫描电镜(SEM)、X射线衍射仪(XRD)等对PAN-KTiO进行了表征,并通过静态吸附实验,研究了接触时间、pH值、竞争离子、Sr~(2+)初始浓度等对PAN-KTiO吸附Sr~(2+)效果的影响,分析了吸附过程的反应动力学和吸附等温线。结果表明,PAN-KTiO对Sr~(2+)的吸附平衡时间约为24 h,PAN-KTiO吸附Sr~(2+)时,溶液最佳pH值约为6.55;Ca~(2+)、Mg~(2+)对Sr~(2+)在PAN-KTiO上的吸附存在较强的抑制作用;准二级动力学方程能更好地描述PAN-KTiO对Sr~(2+)的吸附动力学过程,而Langmuir模型能更好地描述PAN-KTiO对Sr~(2+)的吸附等温线;PAN-KTiO对Sr~(2+)的吸附过程是以化学吸附为主的单分子层吸附,PAN-KTiO对Sr~(2+)的饱和吸附容量可达53.850 mg/g。  相似文献   

9.
为实现高放废液中核素90Sr的分离提取,采用十二烷基苯磺酸(DBS)对4′,4′(5″)-二(叔丁基环己基)-18-冠-6(DtBuCH18C6)进行了改性修饰,合成了新型大孔硅基冠醚吸附剂,并通过SEM、TG-DTA、FT-IR等方法对其进行了表征。结果表明:即使在7 mol/L硝酸环境下,吸附剂中DtBuCH18C6的泄漏量也小于2.03%,有较好的化学稳定性;DBS作为配阴离子促进了DtBuCH18C6与Sr(Ⅱ)的络合,在0.5 mol/L硝酸条件下Sr(Ⅱ)的分配系数提高了约10倍(355.02 cm3/g),且在高酸条件下与硝酸离子呈现协同作用;吸附剂对Sr(Ⅱ)的选择吸附性强,吸附过程符合准二级动力学方程及Langmuir吸附模型,最大饱和吸附容量可达到42.13 mg/g。以1 mol/L硝酸作为洗脱剂,洗脱剂与吸附剂的比例设置为0.90 L/g,接触时间为5 h的条件下,约79%的Sr(Ⅱ)可从吸附剂中洗脱下来,说明吸附剂可重复利用。  相似文献   

10.
首先合成了双键改性的纤维状介孔二氧化硅纳米微球(F-SiO2-K),将其分散在4-乙烯基吡啶(4-vinylpyridine,4-VP)或4-VP的甲醇溶液中,通过共辐射接枝的方法,制备了吡啶基改性纤维状介孔SiO2纳米微球(F-SiO2-VP).热重分析结果表明,聚4-乙烯基吡啶(P(4-VP))在F-SiO2微球上的接枝率随4-VP单体浓度和吸收剂量增加而增加,但随剂量率的增加先增大后减小.将F-SiO2-VP微球分散在含有U(VI)的硝酸溶液中,测定了室温下微球对U(VI)的吸附容量,并对吸附动力学和吸附等温线进行了分析.结果表明,F-SiO2-VP微球对U(VI)的吸附容量与硝酸浓度和P(4-VP)的接枝率有关.当硝酸浓度为5 mol/L,P(4-VP)的接枝率为16%时,对U(VI)的吸附容量最大,达到163 mg/g.该吸附过程符合准二级动力学模型,其吸附热力学则当U(VI)浓度低时符合Freundlich模型,而U(VI)浓度高时符合Langmuir等温吸附模型.  相似文献   

11.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和~1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

12.
采用间氨基苯甲酸为原料,经重氮化-偶联反应对杯[4]芳烃进行上沿改性合成了间羧基苯偶氮基杯[4]芳烃衍生物,再通过取代反应对间羧基苯偶氮基杯[4]芳烃衍生物进行下沿修饰,制备出一种新型材料,即间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物,并采用FT-IR和1H-NMR对其进行结构表征。将该新型材料作为吸附剂用于吸附低浓度含铀水溶液中的铀,考察了溶液pH值、吸附剂用量、铀初始浓度、吸附时间、吸附体系温度等因素对其吸附性能的影响。结果表明:在铀初始浓度为10 mg/L、pH=4、温度为25 ℃、吸附剂用量为10 mg、吸附平衡时间为4 h时,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物对U(Ⅵ)的吸附效果最佳;其吸附过程符合准二级动力学模型,吸附过程为化学吸附;吸附等温线符合Langmuir吸附等温模型,说明该吸附体系是以单层吸附为主。综上所述,间羧基苯偶氮基杯[4]芳烃对称硫醚衍生物是一种潜在的铀吸附剂。  相似文献   

13.
为实现高放废液中核素90Sr的分离提取,采用十二烷基苯磺酸(DBS)对4′,4′(5″)-二(叔丁基环己基)-18-冠-6(DtBuCH18C6)进行了改性修饰,合成了新型大孔硅基冠醚吸附剂,并通过SEM、TG-DTA、FT-IR等方法对其进行了表征。结果表明:即使在7 mol/L硝酸环境下,吸附剂中DtBuCH18C6的泄漏量也小于2.03%,有较好的化学稳定性;DBS作为配阴离子促进了DtBuCH18C6与Sr(Ⅱ)的络合,在0.5 mol/L硝酸条件下Sr(Ⅱ)的分配系数提高了约10倍(355.02 cm3/g),且在高酸条件下与硝酸离子呈现协同作用;吸附剂对Sr(Ⅱ)的选择吸附性强,吸附过程符合准二级动力学方程及Langmuir吸附模型,最大饱和吸附容量可达到42.13 mg/g。以1 mol/L硝酸作为洗脱剂,洗脱剂与吸附剂的比例设置为0.90 L/g,接触时间为5 h的条件下,约79%的Sr(Ⅱ)可从吸附剂中洗脱下来,说明吸附剂可重复利用。  相似文献   

14.
功能化炭基磁性介孔材料的制备及其对铀的吸附性能   总被引:1,自引:1,他引:0  
以介孔氧化硅SBA-15为模板,通过纳米浇筑法在模板孔道中引入不同质量的铁源和炭源作为前驱物,经过原位聚合反应,再使用[3-(三甲氧基硅烷)丙基]脲(UPTS)和氨丙基三乙氧基硅烷(APS)有机试剂对其表面进行后嫁接改性,得到介孔结构规整有序的功能化炭基磁性介孔材料(FCMMC)。并通过红外光谱(FT-IR)、N2吸附-脱附分别表征了FCMMC的结构。考察了溶液pH值、铀初始浓度、吸附剂用量和吸附时间等因素对FCMMC吸附铀的影响。结果表明:炭基和铁基均被负载在介孔氧化硅基体上,FCMMC具有较高的比表面积和较窄的孔径分布。FCMMC吸附铀的最佳条件为:pH=6.0、铀初始浓度25mg/L、FCMMC用量40mg、吸附时间1.0h。对吸附动力学模型和吸附等温模型进行了分析,FCMMC对铀的吸附动力学过程符合准二级动力学模型,吸附等温线符合Langmuir等温线模型,最大理论吸附量为128.69mg/g。同时,使用3种不同的解吸剂对FCMMC解吸再生8次后,其对铀的吸附率均在80%以上,说明FCMMC具有良好的再生性能。  相似文献   

15.
为开发一种兼具高选择性、大吸附容量和快速吸附能力的吸附剂以高效处理放射性废液,本文通过合成后改性,将金属有机框架(MOFs)材料ZIF-90上的游离醛基与硫代氨基脲(TSC)进行缩合,进一步合成了功能化的MOFs材料ZIF-90-TSC。采用扫描电镜、热重分析、N2吸附-解吸、X射线衍射和傅里叶变换红外光谱对该材料进行了表征,并研究了其对模拟废水中Co(Ⅱ)的吸附性能。结果表明:在初始pH=6.70、温度303 K、Co(Ⅱ)初始浓度500 mg/L条件下,ZIF-90-TSC对Co(Ⅱ)的最大吸附量为151.23 mg/g;在多金属离子溶液中ZIF-90-TSC对Co(Ⅱ)和Ni(Ⅱ)表现出选择性吸附。热力学和动力学分析表明,ZIF-90-TSC对Co(Ⅱ)的吸附过程是自发、吸热的过程,符合准二级化学吸附和Langmuir单分子层吸附。因此ZIF-90-TSC在吸附处理放射性废液中的Co(Ⅱ)有一定的应用前景。  相似文献   

16.
为了去除乏燃料溶解液和高放废液中的Zr,研究了酸性条件下硅胶对Zr的静态吸附和对Zr,Pu的动态吸附。研究结果表明,在25℃和1mol/L HNO3时,硅胶对Zr的静态吸附容量约为0225mmol/g,随着料液酸度的降低、硅胶粒度的减小、Zr浓度及固液比的升高,硅胶吸附Zr的能力增大;在4mol/L HNO3溶液中,硅胶吸附Zr而几乎不吸附Pu(Ⅳ),因此可用硅胶吸附法使Zr与Pu(Ⅳ)分离。用2个柱体积的02mol/L H2C2O4可将吸附在硅胶上的Zr解吸下来,洗脱率可达992%。硅胶再次吸附Zr时,吸附性能曲线和吸附容量均无明显变化,硅胶可重复使用。  相似文献   

17.
研究了硝酸溶液中NP(Ⅳ),Np(Ⅴ)和Np(Ⅵ)在硅胶上的吸附行为。实验结果表明,三种价态的镎在硅胶吸附2-4h达到平衡;镎在硅胶上的吸附分配系数随温度的升高而增加;氧化还原剂初始浓度对镎在硅胶上的吸附影响不大;三种价态的镎的吸附规律符合Langmuir吸附等温线,镎在硅胶上的吸附属于单分子层吸附。从吸附热的数据可判断三种价态的镎在硅胶上的吸附属于化学吸附,为吸热过程。  相似文献   

18.
以钛酸钾(KTiO)为有效成分、聚丙烯腈(PAN)为基体,制备了聚丙烯腈基钛酸钾球形复合吸附剂(PAN-KTiO)。采用扫描电镜(SEM)、X射线衍射仪(XRD)等对PAN-KTiO进行了表征,并通过静态吸附实验,研究了接触时间、pH值、竞争离子、Sr2+初始浓度等对PAN-KTiO吸附Sr2+效果的影响,分析了吸附过程的反应动力学和吸附等温线。结果表明,PAN-KTiO对Sr2+的吸附平衡时间约为24 h,PAN-KTiO吸附Sr2+时,溶液最佳pH值约为6.55;Ca2+、Mg2+对Sr2+在PAN-KTiO上的吸附存在较强的抑制作用;准二级动力学方程能更好地描述PAN-KTiO对Sr2+的吸附动力学过程,而Langmuir模型能更好地描述PAN-KTiO对Sr2+的吸附等温线;PAN-KTiO对Sr2+的吸附过程是以化学吸附为主的单分子层吸附,PAN-KTiO对Sr2+的饱和吸附容量可达53.850 mg/g。  相似文献   

19.
研究了液氮温度下活性炭(AC)、碳分子筛(601)和碳纳米纤维(CNF)对H2、D2的吸附等温线,采用2种Langmuir模型对它们吸附H2、D2的等温线进行了理论计算。研究结果表明:在液氮温度下,3种碳基吸附剂对氢同位素的吸附等温线遵从Langmuir单分子层吸附模型,符合按活性点分类的定点吸附机制;吸附等温线可用Langmuir多项式理论模型进行准确计算。  相似文献   

20.
制备了以聚丙烯腈(PAN)为骨架、亚铁氰化镍钾(KNiFC)为核心的球形复合吸附剂(KNiFC/PAN),并通过X射线衍射仪、金相显微镜和电感耦合等离子体质谱仪等手段对该吸附剂进行了分析表征。采用批式实验,研究了硝酸浓度、Na+、NH+4、接触时间等对KNiFC/PAN吸附Cs+的影响,研究了吸附过程的反应动力学和吸附等温线。结果表明,该吸附剂对Cs+的典型吸附分配系数(Kd)为104~105 mL/g,平衡时间小于5 min;硝酸浓度小于1.0 mol/L时,Kd值基本不变,之后随酸度增加,Kd值逐步减小;随着Na+浓度增加Kd值逐步减小;NH+4对Cs+的吸附有明显的竞争。KNiFC/PAN对Cs+的等温吸附较符合Langmuir模型,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号