首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用激光熔覆技术,在铝合金表面制备钛基涂层,对激光熔覆层微观组织、摩擦磨损性能及显微硬度进行测试。结果表明:激光熔覆区主要为树枝晶,过渡区主要为胞状晶,热影响区以等轴晶为主。熔覆层样品表面平均硬度较铝合金基体(120HV)提高了2倍,硬度值为326.3HV。熔覆层的耐磨性能提高显著,表面主要为微小犁沟,磨损损失质量约为铝合金基体的53%。  相似文献   

2.
针对 45 钢基材设计了 Fe55 激光熔覆合金粉末, 并进行了工艺验证, 获得了高硬度、 表面无裂纹的激光熔 覆层。 利用金相显微镜、 显微硬度计、 摩擦磨损试验、 中性盐雾试验研究了熔覆层的组织、 结构、 磨损和耐腐蚀 性能。 结果表明: 熔覆层硬度可达 HV1640, 与基体的结合为冶金结合, 显微组织为树枝状等轴晶, 耐磨性和耐 腐蚀性能优异。  相似文献   

3.
为了研究球墨铸铁QT600-3表面激光熔覆钴基合金的组织和性能,本试验采用预置送粉法,利用6 kW CO_2激光器将粒度为46~106μm的CoCrW合金粉末激光熔覆到QT600-3基材表面,激光熔覆工艺参数为:激光功率P=3.0 kW、扫描速度V=350 mm·min~(-1)、光斑直径2 mm、搭接率1.5,三道次熔覆,熔覆层厚度约为3 mm,在熔覆过程中采用热量补偿方法对试样温度场进行调控。通过Olympus金相显微镜(OM)、Zeiss-Sigma扫描电镜(SEM)、X'Pert MPD Pro型X射线衍射仪(XRD)、MHV2000数显显微硬度计,分析了熔覆层横截面的显微组织、物相及硬度的变化规律。结果表明:熔覆层表面成形良好,无裂纹、气孔等缺陷;熔覆层分为熔化区、结合区和热影响区,熔覆层与基体冶金结合良好,主要由γ-Co(面心立方)过饱和固溶体以及碳化物CoC_x,Cr_7C_3等组成;熔化区由表层的树枝晶和内部的胞状晶组成,在热影响区发生了组织转变,形成了马氏体并且球状石墨部分溶解,直径变小。熔覆层硬度随着与球墨铸铁基体表面距离增加,呈现先快速增大,后平缓增加,最后在表层区域又快速增大,熔覆层的最高硬度达到HV0.21077,较球墨铸铁基体的硬度提高了4倍以上。  相似文献   

4.
45钢激光熔覆镍基合金组织及性能研究   总被引:1,自引:0,他引:1  
刘建刚  秦茶  段松 《河北冶金》2013,(12):16-21
采用横流CO,激光器在45钢表面激光熔覆了一层镍基合金涂层,研究了激光加工工艺对熔覆层组织、性能的影响。结果表明:熔覆层宏观质量良好;熔覆层与基体形成了良好的冶金结合;熔覆层组织均匀致密并呈现出垂直于界面的定向凝固特征,从结合区到表面依次为平面晶、胞状晶、粗大枝晶、细小枝晶等;熔覆层显微硬度与绝对比能量有关,其值为12时有最大硬度,可达610.6HV,为基体硬度的4倍。综合考虑各影响因素并进行正交分析得出结论:送粉率7.1g/min、扫描速度2.5mm/s、激光功率3000W时为最佳工艺参数。  相似文献   

5.
为了提高铝合金材料的表面性能,使其具有较高的硬度和耐磨性,利用激光熔覆技术在6063铝合金表面制备了添加稀土氧化物CeO2的Ni60合金熔覆层。分析了激光熔覆CeO2+Ni60熔覆层的宏观形貌、显微组织及硬度,研究了其摩擦磨损性能,并与未添加稀土的Ni60合金熔覆层和铝合金基体进行了对比研究。结果表明,加入2%CeO2可降低Ni60熔覆层表面起伏,获得较好的熔覆层宏观形貌,同时有效地减少Ni60熔覆层中的裂纹、孔洞和夹杂物,促进晶粒细化,提高熔覆层的组织均匀性;添加2%CeO2的Ni60熔覆层比未加稀土的Ni60熔覆层组织更加均匀,晶粒较细小,气孔等组织缺陷更少,熔覆质量较好;在相同深度位置的显微硬度,2%CeO2+Ni60熔覆层明显高于Ni60熔覆层,2%CeO2+Ni60熔覆层最高硬度可达HV0.051180,是6063铝合金基体平均硬度的8.4倍;在相同磨粒磨损条件下,2%CeO2+Ni60熔覆层试样的耐磨性是铝合金基体的7.1倍,是Ni60熔覆层试样的1.6倍;激光熔覆Ni60可以显著降低铝合金表面摩擦系数,而添加稀土元素Ce能提高Ni60熔覆层的摩擦系数稳定性,从而改善耐磨性能。  相似文献   

6.
采用半导体激光器在2205双相不锈钢表面激光熔覆Ni基合金涂层.借助扫描电镜、电化学综合测试仪和硬度测试仪等,探讨了激光功率对涂层稀释率、微观组织、耐腐蚀性能及硬度的影响.结果表明:激光功率越大,涂层稀释率越大,熔覆层与基体元素发生更多的对流扩散;熔覆层的耐腐蚀性能随激光功率的增加而降低,当激光功率为2.7 kW时,熔覆层的自腐蚀电位最低,为-0.46 mV,腐蚀电流最小,为3.47×10-5 A/cm2. 硬度测试实验表明,激光熔覆Ni基合金涂层硬度最高达680 HV,约为基体硬度的2.5倍.   相似文献   

7.
采用激光熔覆技术在T10A钢表面制备了FeMoCoNiCrTix(x分别为0.25,0.50,0.75,1.00)高熵合金熔覆层,分析了试样熔覆层及基体界面处的相结构及组织,并利用显微硬度计测试了试样处理前后的截面硬度变化。研究表明,经过激光熔覆在T10A钢表面得到的高熵合金层主要由NiCrFe、NiCrCoMo 2种固溶体为主,其结构分别为BCC结构和FCC结构,熔覆层的组织以柱状枝晶为主,界面处出现等轴晶;随着Ti含量增多,熔覆层由固溶强化变为固溶体与硬质相混合强化,熔覆层的HV硬度达到了792,热影响区的HV硬度达到了620,均高于基体硬度。同时耐磨损性能有了明显提高,磨损方式由粘着磨损逐渐变为磨粒磨损。   相似文献   

8.
NiCrBSiC合金大面积激光熔覆层性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李刚  邱星武  邱玲  况军  相珺 《冶金分析》2008,28(10):1-1
采用CO2激光器及LASERCELL-1005六轴六联动三维激光加工机床在40Cr钢上进行激光熔覆处理。利用扫描电镜、X射线衍射仪、显微硬度计、电化学测试系统、磨料磨损试验机等设备对熔覆层组织、硬度、磨损、腐蚀性能进行研究。结果表明:大面积激光熔覆层主要由Cr23C6,Ni3B,(Fe,Ni),Ni等相组成。激光熔覆层的显微硬度值在420~1 320 HK之间。熔覆层的硬度、耐磨性和耐蚀性与基体相比均有较大的提高;大面积激光熔覆层的显微硬度、耐磨性、耐蚀性均不及单道激光熔覆层;多层叠加熔覆层的耐蚀性能优于  相似文献   

9.
研究了半导体激光与TIG电弧复合热源在Q235基体上熔覆Ni60金属粉末熔覆层的宏观形貌、微观组织、显微硬度、耐磨性、耐腐蚀性等性能。研究表明激光-TIG电弧复合热源熔覆中,引入电弧可以显著降低所需激光功率并得到与大功率激光熔覆层相近的宏观形貌,同时复合热源熔覆层具有较好边缘铺展性;复合热源中电弧功率不变,随着激光功率的增加,熔覆层中枝晶尺寸变大,同时Cr的析出物数量减少、尺寸增加且分布趋向不均匀,这导致熔覆层的显微硬度、耐磨性、耐腐蚀性均降低。  相似文献   

10.
采用激光熔覆技术在 45 钢表面制备了 FeCrBSi 熔覆层, 研究了激光功率对熔覆层组织和硬度的影响规律。 试验结果表明, 激光熔覆 FeCrBSi 熔覆层上部、 中部和下部的组织分别为等轴晶、 胞状晶和胞状树枝晶、 平面晶。 在扫描速率 8 mm/s, 送粉率 33 g/min, 光斑直径 3.19 mm, 激光功率 1800~3400 W 的条件下, 随着激光功率的增 加, 熔覆层不同位置的显微组织变粗; 熔覆层硬度先升高再降低; 熔覆层磨损体积先减少后增加; 熔覆层的自腐 蚀电位先升高后降低; 自腐蚀电流密度先降低后升高。 当激光功率为 2600 W 时, 熔覆层具有最高显微硬度 669 HV0.2, 熔覆层耐磨性最好, 磨损体积为基体 59.8 %, 同时熔覆层的耐蚀性最优, 自腐蚀电位为 -426.41 mV, 自 腐蚀电流密度为 0.45 μA/cm2。  相似文献   

11.
层流冷却辊感应熔覆制造技术   总被引:1,自引:0,他引:1  
为了提高中宽带钢板热轧层流冷却辊的使用寿命,采用中频感应加热技术在层流冷却辊20号钢基体表面制备了KF-Ni60A熔覆层。对熔覆层的SEM、EDS、XRD和硬度进行了分析。结果表明:重熔后界面附近的显微组织分为三部分:基体-过渡区-涂层熔覆区。涂层熔覆区为Ni基的,其上分布着富含铬的块状组织、碳化物及硼化物等硬质相。过渡区内发生了冶金结合。感应重熔后辊面洛氏硬度值为HRC59.6,涂层熔覆层截面方向的维氏硬度均值为698HV0.3。试验辊上机实际应用达到进口件的寿命指标。  相似文献   

12.
以B4C粉、Ti粉和Fe粉末为原料,采用氩弧熔覆技术在Q235钢基体表面制备出增强复合涂层。利用扫描电镜,X射线衍射仪,显微硬度仪和摩擦磨损试验机等对复合涂层的组织,相组成,硬度和耐磨性能进行了研究。结果表明:熔覆层相由α-Fe、颗粒状Ti C和Ti B构成,Ti C颗粒弥散分布在基体上,涂层显微硬度高达700HV0.2,耐磨性能比Q235钢基体提高约6倍。  相似文献   

13.
为提高液压活塞杆的耐腐蚀和抗磨损性能,在45号钢表面采用激光熔覆技术在不同激光功率下制备具有马氏体/铁素体组织的Fe基合金熔覆层。利用X射线衍射仪、扫描电镜、X射线能谱仪等手段表征涂层的物相组成、微观形貌和元素分布,采用维氏硬度计和干滑动摩擦试验机对涂层的显微硬度和抗磨损性能进行测试,并通过电化学工作站研究熔覆层的耐腐蚀性能。结果表明:Fe基合金熔覆层的主要物相为α-Fe、Ni-Cr-Fe、γ-(Fe,C)和Fe9.7Mo0.3等,主要组织为马氏体、铁素体和少量残余奥氏体。熔覆层的枝晶态组织均匀致密,无裂纹和孔隙缺陷,涂层与基体呈冶金结合。涂层的硬度与耐磨性能随激光功率增大而提高,当功率为2.4kW时,涂层的平均显微硬度(HV)为647.64,耐磨性能为45号钢的9.37倍,磨损机制为磨粒磨损。随激光功率提高,Fe基合金熔覆层的耐腐蚀性能先升高后降低,当激光功率为2.0 kW时涂层具有最佳耐腐蚀性能,显著高于活塞杆常用碳钢、不锈钢以及电镀硬铬等材料,可在相关领域替代电镀铬。  相似文献   

14.
采用激光熔覆法,在20#钢表面制备出添Y2O3的镍基合金粉末的熔覆涂层.分析了熔覆层的相组成、高温耐磨性能;观察了熔覆层显微形貌.结果表明:所制得的熔覆层组织均一、致密,与基体形成了良好的冶金结合.添加Y2O3的熔覆层硬度提高到基体的3.9倍,高温耐磨率仅是基体的1/4.熔覆层耐磨能力增强的主要原因是熔覆层与基体良好的冶金结合,镍基合金良好性能,组织细化以及硼化物、硼碳化物等析出相的强化作用.  相似文献   

15.
针对水导润滑轴承在高硼水溶液的工作介质中发生的汽蚀现象,拟采用激光熔覆的方法提高其表面性能。通过激光熔覆技术在304奥氏体不锈钢表面熔覆了Ni40合金粉末,研究了激光功率对熔覆层组织与性能的影响。用半导体激光器对304奥氏体不锈钢进行激光熔覆,形成厚约为0.8 mm的熔覆层。试样分别用金相显微镜(OM)、扫描电子显微镜(SEM)进行显微组织分析,用维氏硬度计测量熔覆层剖面硬度梯度,用磨损试验机测试熔覆层的耐磨性能,并在硼酸溶液中进行耐蚀性能检测试验。实验结果表明:Ni40熔覆层主要由γ-Ni及铬的化合物组成,功率影响熔覆层组织大小及元素分布,但并未引起物相的变化;相比基体,熔覆层硬度明显提高,且随功率增加而下降,熔覆层厚度随功率增加而加厚;熔覆层在摩擦磨损过程中产生的质量损失约为1.5×10~(-2)g左右,且随功率的增加而减少;熔覆层在硼酸溶液中的耐蚀性随激光功率的增加有所提高。  相似文献   

16.
在保证钛合金穿地阀门硬密封面耐腐蚀性前提下,为了提高其硬度、耐磨性及抗压疲劳性能,以TA2钛合金板材作为基体,利用YAG激光器进行表面激光熔覆纯钽(Ta)的探索实验研究。分别采用OM、SEM、EDS及显微硬度计,研究了激光熔覆的Ta涂层的冶金结合情况、组织结构、成分分布及硬度分布。结果表明:在TA2钛合金表面直接激光熔覆纯Ta粉是可行的,且制备的Ti-Ta合金涂层与基体形成良好的冶金结合;激光熔覆层内Ti元素稀释度较大,随着与结合面距离的增加,稀释度逐渐减小;激光熔覆层与基体结合区主要由枝晶组成,熔覆层中部由枝晶及部分块状组织组成;熔覆层显微硬度HV_(0.2)为190~200,相对Ti基体硬度提高了40以上,而结合区显微硬度HV_(0.2)为200~220,硬度梯度变化较为明显。  相似文献   

17.
采用CO2连续激光器在H13模具钢表面制备Co基合金涂层。利用扫描电镜(SEM)、能谱分析仪(EDS)、显微硬度计和摩擦磨损试验机等设备分析测试了熔覆层的微观组织和性能。结果表明:激光熔覆层与H13钢基材之间呈现良好的冶金结合特征。熔覆层与基材的结合区为粗大柱状晶和细小共晶组织,熔覆层中部呈典型亚共晶组织特征,表层为致密而细小的亚共晶组织。经过激光熔覆处理后,H13钢基材表面硬度和耐磨性得到了显著改善。  相似文献   

18.
本文研究了送粉法激光熔覆条件下,最优化的激光熔覆工艺窗口及其对熔覆层性能的影响.结果表明,对于粒度范围为53~150μm的球形不锈钢粉,送粉法激光熔覆的最优化的工艺窗口为:功率2600 W、扫描速度8 mm/s、熔覆层厚度2.0 mm、搭接率50%.在此条件下熔覆层显微硬度最高可达721.68 HV0.2,为基体硬度的...  相似文献   

19.
不同熔覆材料对送粉激光熔覆层组织、性能的影响   总被引:3,自引:0,他引:3  
陈莉  黄凤晓  赵宇  刘喜明 《铁合金》2005,36(1):30-32
在铁基自熔合金基础上分别加入稀土硅铁和铌铁在球墨铸铁基体上进行激光熔覆,通过对熔覆层显微组织的观察及性能的测试,得出不同熔覆材料对熔覆层组织、性能的影响。  相似文献   

20.
以高碳铬铁粉和铁基合金粉末作为涂覆粉末,通过真空感应熔覆技术在45号钢表面获得具有较高硬度的复合涂层,并实现熔覆层与基体材料良好的冶金结合。通过宏观洛氏硬度测试、微观显微硬度测试、X射线衍射分析、显微组织分析、能谱分析进一步分析复合材料的组织结构和性能指标。分析结果显示:熔覆层的表面洛氏硬度HRC能够达到63以上,由熔覆层向基体材料内部显微硬度呈梯度分布;硬质增强相主要是Cr7C3、Cr2B等物相组成,分布在熔覆层和过渡区中,提高了涂层硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号