首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of fullerene dispersion on the mechanical properties of carbon-fiber reinforced epoxy matrix composites (CFRPs). Mechanical properties such as tension, compression, open-hole compression, comparession after impact (CAI), binding, short beam shear, and interlaminar fracture toughness were evaluated for [0]8, [90]16, [45/0/?45/90]2S laminates. Tension and compression strengths increased 2–12% by dispersing 0.5% of fullerene into the matrix resin. Furthermore, interlaminar fracture toughness of the composite was improved by about 60%. It was revealed that a small amount of fullerene (0.1–1 wt.%) increased the failure strain of epoxy resin itself, thereby improving the CFRP strength.  相似文献   

2.
The interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites was studied with short beam shear bending test. Random glass fiber (R)/epoxy means chopped fiber composite having short discontinuous fiber randomly dispersed in epoxy matrix. The effect of stacking sequence and unidirectional glass fiber relative volume fraction (VfU/VfT) on the interlaminar shear strength (ILSS) of the manufactured composites has been investigated experimentally and theoretically. The laminates were fabricated by hand lay-up technique with 5 plies. Two non-hybrid composite laminates [R]5 and [U]5 were fabricated using the same fabrication technique for the comparison purpose. The average thickness of the manufactured laminates is 5.5 ± 0.2 mm and the total fiber volume fraction (VfT) is 37%. Failure modes of all specimens were investigated. Experimental results indicated that the ILSS of [U]5 is higher than those of hybrid and [R]5 composite. Hybrid composites have higher ILSS than that of random composites. The stacking sequence and (VfU/VfT) ratio have a detectable effect on ILSS of the investigated composites.  相似文献   

3.
研究了碳纤维增强聚酰亚胺树脂基复合材料MT300/KH420的高温力学性能, 重点揭示了MT300/KH420的[0°]7、[0°]14 和[±45°/0°/90°/+45°/0°2]s层合板在常温~500 ℃的拉伸和层间剪切性能的变化规律。结果表明:在350 ℃以内,[0°]7层合板拉伸强度随温度升高有所提高, 拉伸模量几乎不变, 在420 ℃时拉伸强度和模量均出现明显下降, 在500 ℃时分别保持在65%和83%以上, 表现出优异的高温拉伸性能。MT300/KH420的[0°]14层合板层间剪切强度在常温~420 ℃随温度升高不断降低至52.8%, 在高温下呈现出黏弹效应, 且在420 ℃时最为明显。相比于单向层合板, [±45°/0°/90°/+45°/0°2]s多向层合板高温力学性能较为稳定, 且由纤维控制的纵向试件力学性能受温度影响较小。   相似文献   

4.
As the improved damping in fiber-reinforced composites can affect the other mechanical properties, therefore, the aim of this work is to investigate the effect of multiwall carbon nanotube (MWCNT) on the interfacial bond strength, flexural strength and stiffness, toughness and damping properties of hybridized glass-fiber reinforced epoxy (GFRE) composites. Nanophased epoxy resin was used to hybridize unidirectional and quasi-isotropic GFRE composites with [0/±45/90]s and [90/±45/0]s stacking sequences. Results from the interfacial characterizations of the hybridized composites showed improvement up to 30% compared to the control laminates. Hybridization of GFRE laminates with MWCNTs leads to decreasing the flexural and storage moduli, increasing flexural strength, toughness, natural frequencies and damping ratio. A high correlation coefficient of 0.9985 was obtained between static flexural and dynamic storage moduli. The highest flexural strength, flexural and storage moduli and natural frequency of quasi-isotropic laminate were observed for [0/±45/90]s stacking sequence and vice versa for damping ratio.  相似文献   

5.
This paper compares the initial shear modulus distributions obtained from [0]20, [90]20 and [0/90]5s Iosipescu and [45]20 off-axis T300/914 specimens. The data reduction processes for the two tests are presented together with a finite element analysis of the Iosipescu test that enables the determination of correction factors to account for the non-homogeneity of the stress and strain fields along the notch line. A preliminary 45° off-axis test is performed to determine a region of linear elastic behaviour within which the samples are each tested four times. Close examination of the test data leads to a detailed discussion of the quality of the Iosipescu specimens in terms of perpendicularity of the loading surfaces to the lateral faces. The degrees of scatter due to the mechanical loading conditions and to the sample to sample variations are compared.  相似文献   

6.
《Composites Part A》1999,30(10):1197-1207
The aim of the present work is to study both experimentally and theoretically the compression failure mechanisms in multi-directional composite laminates, and especially the effect of the off-axis ply orientation on fibre microbuckling in the 0°-plies. The critical mechanism in the compressive fracture of unidirectional polymer matrix composites is plastic microbuckling/kinking. In multi-directional composites with internal 0°-plies, catastrophic failure also initiates by kinking of 0°-plies at the free-edges or manufacturing defects, followed by delamination. When 0°-plies are located at the outside, or in the case of cross-ply laminates, failure rather tends to occur by out-of-plane buckling of the 0°-plies. T800/924C carbon-fibre–epoxy laminates with a [(±θ/02)2]s lay-up are used here to study the effect of the supporting ply angle θ on the stress initiation of 0°-fibre microbuckling. Experimental data on the compressive strength of laminates with θ equal to 30, 45, 60 or 75° are compared to theoretical predictions obtained from a fibre kinking model that incorporates interlaminar shear stresses developed at the free edges at (0/θ) interfaces. Initial misalignment of the fibres and non-linear shear behaviour of the matrix are also included in the analysis.  相似文献   

7.
The fatigue life of cross-ply composite laminates was evaluated using a statistical model. A modified shear-lag analysis was applied to describe the cycle-number-dependent stiffness reduction and consequent stress redistribution processes in the laminates resulted from both progressive transverse matrix cracking in transverse plies and local delamination at tips of transverse cracks. From the strength degradation behaviour and the static strength distribution of 0° plies as well as the fatigue behaviour of 90° plies, the fatigue life of cross-ply laminates with various types of lay-up can be simulated from the model. Predictions of fatigue performance are compared with experimental data for [0/902] s , [02/902] s and [02/904] s graphite/epoxy cross-ply laminates: good agreements are obtained.  相似文献   

8.
Application of Weibull statistics to tensile strength prediction in laminated composites with open holes is revisited. Quasi-isotropic carbon fiber laminates with two stacking sequences [45/0/−45/90]s and [0/45/90/−45]s with three different hole sizes of 2.54, 6.35 and 12.7 mm were considered for analysis and experimental examination. The first laminate showed 20% lower strength for smaller and 10% for the larger hole sizes. A novel critical failure volume (CFV) method with minimum scaling length constraint as well as the traditional Weibull integral method were applied. The strength prediction was based on the state of stress in the 0° ply by taking into account the redistribution of stress due to matrix damage in the form of splitting, delamination and matrix cracking of off axis plies. The state of matrix damage precipitating failure was recorded by using X-radiography and examined by a sectioning technique. The measured extent of damage was then included in a 3D stress analysis procedure by using a mesh independent crack modeling method to account for fiber direction stress redistribution. The CFV method gave results within one standard deviation from experimentally observed strength values for both laminates and all three hole sizes. The Weibull integral method underpredicted the strength in all cases from as much as 20–30% for smaller hole sizes to 8% for the large holes. The accuracy of failure predictions using CFV is attributed to the introduction of a minimum scaling length. This length has a physical meaning of the width of a process zone of formation of fiber macro-crack as a result of single fiber break interaction. Direct measurement or rigorous evaluation of this parameter is, however, difficult. Consistent with referenced micromechanical studies, its value was assigned equal to six times the Rosen’s ineffective length.  相似文献   

9.
Three-phase glass fiber reinforced composites (GFRP) consisting of traditional woven glass fiber and polyamide-6 (PA6) matrix dispersed with organically modified layered silicates were prepared and investigated in this study. The fabrication of GFRP with different weight percentages of layered silicates was successful when the matrix contains less than 5 wt% of the layered silicates. The improvement due to the high aspect ratio and high stiffness of the layered silicates is illustrated through the matrix-controlled properties of the GFRP. The results showed that the GFRP with 5 wt% layered silicates offer the largest improvement of approximately 30% increase in both flexural strength and compressive strength at elevated temperatures. On the other hand, the in-plane shear properties measured from [±45]s laminates revealed that the layered silicates help improved both the in-plane shear strength and modulus appropriately. By utilizing a nanocomposite matrix, improvement of stiffness and strength, as well as thermal and barrier properties is obtained without any change in processing temperature of the fiber composites.  相似文献   

10.
《Composites Part B》2002,33(1):67-76
Notch fatigue strengthening under different cyclic stress levels and elapsed number of cycles has been studied in [0/90]4S AS4/PEEK laminates. Quick and extensive 0° fiber splitting and the corresponding 90° fiber shear off were found to be the underlying causes of stress concentration alleviation. This effectively raised the residual strength of the notched laminates and increased their fatigue lives to beyond one million cycles. On the other hand, re-consolidation of fatigued specimens removed most of the internal damages and in the meantime reverses the above strengthening. Detailed study of the residual strength changes and damage development history using re-consolidation lent support to the above deductions on the notch fatigue strengthening phenomenon in [0/90]4S AS/PEEK laminate.  相似文献   

11.
《Composites Part A》2002,33(3):361-368
It is well known that composite laminates are easily damaged by low velocity impact. This event causes internal delaminations that can drastically reduce the compressive strength of laminates. In this study, numerical and experimental analyses for predicting the damage in carbon–epoxy laminates, subjected to low velocity impact, were performed. Two different laminates (04,904)s and (02,±452,902)s were tested using a drop weight testing machine. Damage characterisation was carried out using X-rays radiography and the deply technique. The developed numerical model is based on a special shell finite element that guarantees interlaminar shear stresses continuity between different oriented layers, which was considered fundamental to predict delaminations. In order to predict the occurrence of matrix failure and the delaminated areas, a new failure criterion based on experimental observations and on other developed criteria, is included. A good agreement between experimental and numerical analysis for shape and orientation of delaminations was obtained. For delaminated areas, reasonable agreement was obtained.  相似文献   

12.
纤维束增强树脂基复合材料(FBC)及其单向层合板在标准Iosipescu剪切实验中表现出非常相似的破坏特征,然而测量得到的剪切强度却有明显差异。本文使用两种碳纤维和两种环氧树脂制备了3种FBC和单向层合板,对FBC剪切强度和单向层合板层间剪切强度进行了测量与分析。应用界面单元方法分析了纤维束与基体之间的界面应力场,发现FBC剪切试件中纤维束/基体界面附近的应力状态为拉剪耦合,而单向层合板中界面处于纯剪切应力状态,这一差异导致FBC剪切实验测量的强度低于单向层合板的剪切强度。本文基于Yamada-Sun强度理论建立了FBC剪切强度与单向层合板剪切强度之间的关系模型,应用该模型预测的单向层合板剪切强度与实测强度之间达到良好的一致性,相对偏差为10%左右。根据本文提出的方法,通过制样较简单的FBC试验能够预测和评估相应单向层合板的层间剪切性能。  相似文献   

13.
The present paper develops a stiffness-based model to characterize the progressive fatigue damage in quasi-isotropic carbon fiber reinforced polymer (CFRP) [90/±45/0] composite laminates with various stacking sequences. The damage model is constructed based on (i) cracking mechanism and damage progress in matrix (Region I), matrix-fiber interface (Region II) and fiber (Region III) and (ii) corresponding stiffness reduction of unidirectional plies of 90°, 0° and angle-ply laminates of ±45° as the number of cycles progresses. The proposed model accumulates damages of constituent plies constructing [90/±45/0] laminates by means of weighting factor η 90, η 0 and η 45. These weighting factors were defined based on the damage progress over fatigue cycles within the plies 90°, 0° and ±45° of the composite laminates. Damage model has been verified using CFRP [90/±45/0] laminates samples made of graphite/epoxy 3501-6/AS4. Experimental fatigue damage data of [90/±45/0] composite laminates have fell between the predicted damage curves of 0°, 90° plies and ±45°, 0/±45° laminates over life cycles at various stress levels. Predicted damage results for CFRP [90/±45/0] laminates showed good agreement with experimental data. Effect of stacking sequence on the model of stiffness reduction has been assessed and it showed that proposed fatigue damage model successfully recognizes the changes in mechanism of fatigue damage development in quasi-isotropic composite laminates.  相似文献   

14.
The in-plane shear properties (shear strength τxy and shear modulus Gxy) of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composites have been investigated experimentally and theoretically. The effect of stacking sequence and random fiber relative volume fraction (VfR/VfT) in hybrid composites were reported. Laminates were fabricated by hand lay-up technique with a total of 5 plies, by varying the number and position of random glass layers so as to obtain four different hybrid laminates; i.e. [0.5R/U/U]S, [U/0.5R/U]S, [U/U/0.5R]S, and [U/R/U/R/U]. All unidirectional fiber laminate [U]5 and another of all random fiber laminate [R]5 were also fabricated for comparison purpose. The average thickness of the manufactured laminates is 5.5 ± 0.2 mm and the total fiber volume fraction (VfT) is 37%. Failure modes of all specimens were investigated. Results indicated that the in-plane shear properties (shear strength τxy and shear modulus Gxy) of unidirectional fiber composite can be considerably improved by incorporation of random glass fiber and forming hybrid composites.  相似文献   

15.
Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57–70 2014) to include delamination and simulated additional [45/?45/0/90]s and [02/90n]s {n?=?1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n?=?2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.  相似文献   

16.
A quasi three-dimensional yield function, which is quadratic in stresses except for σ11, is proposed for graphite/epoxy composites. The elastic-plastic interlaminar stress response near a free edge in the [90/0]s, [0/90]s, and [45/−45]s laminates with and without delamination cracks was investigated using the pseudo three-dimensional finite element technique. The plasticity model was evaluated by comparison with off-axis experimental data. Since shear response is the key element for nonlinear stress-strain behavior of graphite/epoxy composites, the plasticity theory predicts interlaminar stresses in the [45/−45]s laminate significantly different from linear elasticity. Moreover, the existence of a delamination crack caused more plasticity effects on interlaminar stresses.  相似文献   

17.
This study focuses on the experimental characterization of damage behavior due to thermo-oxidative-induced matrix shrinkage in carbon fiber reinforced plastics (CFRP) with polycyanate ester. To investigate the effects of laminate configuration on matrix shrinkage behavior, [90]8 and [0]8 unidirectional laminates, [±45]2S angle ply laminates, and [45/0/–45/90]3S quasi-isotropic laminates were exposed to high temperature atmospheric environment at 180 °C to analyze matrix shrinkage up to 2000 h. These samples were removed from convection oven to observe sample side surface changes. The thermo-oxidative-induced matrix shrinkage was measured on the side surface of CFRP sample by confocal laser microscopy. The results suggested thermo-oxidative-induced matrix shrinkage depended on aged hours, fiber-to-fiber distance, and fiber orientation angle. The matrix shrinkage coefficient could be calculated with a tensorial transformation and empirical formula. The model can predict matrix shrinkage tendency of the 45° intra-lamina layer in quasi-isotropic laminate using the data of 0° and 90° matrix shrinkage in the quasi-isotropic laminates.  相似文献   

18.
《Composites Part A》2002,33(6):893-902
This work compares the impact resistance enhancement available through modifications to the interlaminar region of carbon fibre epoxy composites. Interleaving and short fibre interlaminar reinforcement techniques were used to improve the impact resistance of [0/90]5 laminates tested using a Dynatup 8250 instrumented impact tester. Visual observation was also employed to assess the affects of the interlaminar reinforcement whilst quantifiable assessment compared incident and restitutive energies to determine energy absorbed during the impact event. The results confirmed that when short fibres are used to interlaminarly reinforce the laminates, lower quantities of incident energy are absorbed than when laminates are interleaved or remain unreinforced. Visual inspection however showed damaged areas to be smallest in interleaved specimens, followed by short fibre reinforced and unreinforced laminates.  相似文献   

19.
The effect of fibre orientation and laminate stacking sequence on the tensile and fatigue behaviour of SCS-6/Ti 15-3 composites were investigated. The laminates used in this study were: (90)6, (0/ ± 45)s, (0/90)s, and (90/ +-45)s. The initiation and progression of microstructural damage at various stress levels was thoroughly characterized. It was found that fatigue life at high applied stresses were controlled by fibre fracture; progressive damage involving fibre fracture, interfacial debonding and matrix cracking became dominant at low applied stresses. Observation of the damage mechanisms in the angle-ply laminates under cyclic loading suggests that increasing the fibre-matrix bonding strength may improve the load carrying capability and fatigue life of laminates containing off-axis plies.  相似文献   

20.
A three dimensional (3D) finite element model is developed to predict the progressive fatigue damage and the life of a plain carbon/epoxy laminate (AS4/3501-6) based on the longitudinal, transverse and in-plane shear fatigue characteristic. The model takes into account stress analysis, fatigue failure analysis, random distribution and material property degradation. Different cross- and angle-ply laminates including [08], [908], [0/902]s, [0/904]s, [02/902]s, [3016], [45/−45]2s with the available experimental data are considered for the fatigue life simulation. In order to consider the random distribution of the laminate’s properties from element to element in the model, the laminate’s stiffness, and strength are randomly generated using a Gaussian distribution function. Sudden and gradual material properties degradation are considered during the fatigue simulation. The progressive fatigue damage and failure analysis is implemented in ABAQUS through user subroutines UMAT (user-defined material) and USDFLD (user-defined field variables). The predicted fatigue life of the simulation for different laminates is in good agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号