共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种改进SIFT特征点匹配算法,旨在提高图像的特征点匹配算法效率。SIFT特征点检测算法检测到的特征点数量较大,且每个特征点描述子都是128维的向量,算法匹配时间较长,实时性较差,改进的算法将特征点描述子的维数从128维降低到48维,而描述子像素范围从16×16提高到24×24。实验表明,改进的算法不仅降低了匹配时间,而且提高了匹配精度。 相似文献
2.
尺度不变特征变换即SIFT算法存在实时性差,易误匹配等固有问题,本文针对性地提出了特征描述符降维处理和匹配优化解决方案,得到一种能满足更高实时性和精确性需求的特征匹配算法.通过使用特征点为中心的9个同心圆环梯度累计值,构建72维特征向量,进行特征描述符降维,达到简化特征描述的目的,从而减少描述符的生成和匹配时间.此外,结合匹配点择优筛选和RANSAC算法匹配提纯,有效地减少了误匹配.实验表明:改进优化后的特征匹配算法既显著地提高了特征匹配精确度,又改善了算法自身实时性. 相似文献
3.
针对基于SIFT算子的商标图像搜索方法提取特征点耗时过长的问题,提出了一种Harris和SIFT算子相结合的商标图像搜索方法,利用角点计算量小、用时少且特征点分布均匀的优点,能够反映图像内容的结构,具有较好的稳定性。实验结果表明,与基于SIFT和基于Harris特征的商标检索方法相比,该方法既保留了Harris方法提取特征点的高效性,也解决了SIFT方法对特征点提取时间过长的问题,具有实时性。 相似文献
4.
一种基于改进SIFT算法的图像配准方法 总被引:1,自引:0,他引:1
给出一种改进的SIFT算法,并将该算法应用到图像配准中.首先,该改进算法结合Canny算子,去除影响匹配的边缘点.然后采用最近邻与次近邻之比来对96维描述子进行匹配.最后,采用随机抽样一致性(RANSAC)方法消除误匹配.实验结果表明,与原SIFT算法相比,该算法能够有效提高图像配准确度,并减少了10%左右的运算时间. 相似文献
5.
6.
一种基于ORB检测的特征点匹配算法 总被引:1,自引:0,他引:1
针对传统的SURF局部特征匹配算法实时性不高的问题,充分利用ORB特征点检测算法简单高效的优势,提出了一种新的特征点匹配算法。首先,针对原始ORB特征匹配算法出现大量误匹配对的问题,采用基于K最近邻的特征点描述后,对前后两帧特征点进行双向匹配,再通过顺序抽样一致性算法进一步提纯。实验结果表明,经过本文算法提纯后匹配对准确度提升到99.9%,平均耗时0.46 s,处理速度约是SURF特征匹配算法的5倍,SIFT特征匹配算法的25倍,能够满足实时运用的需求。 相似文献
7.
8.
针对传统匹配算法对旋转和扭曲图像匹配效果不佳的问题,提出一种基于蛋白点区域SIFT(Sale Invariant Feature Transform)特征的凝胶图像间蛋白点匹配算法.首先,提取蛋白点区域SIFT特征;然后,根据SIFT特征实现蛋白点粗匹配,并采用RANSAC (Random Sample Consensu)方法剔除误匹配特征点;最后,通过计算粗匹配点集之间的TPS(Thin Plate Spline)变换关系,采用几何相关法完成蛋白点间的精匹配.通过对国际凝胶图和Bio-Rad公司测试图等不同图源的凝胶图像进行蛋白点匹配实验,结果表明,该算法具有较高的匹配精度,其匹配误差小于2.2%,对旋转和扭曲图像同样具有良好的鲁棒性. 相似文献
9.
图像特征点的提取与匹配是增量式SFM重建系统中至关重要的一步。为了提高匹配的准确率以及有效匹配点对的数量,提出了一种改进方法:首先在多尺度空间中利用自适应阈值的FAST角点检测算法获取特征点;然后计算特征点与其多个环形邻域之间的灰度对比信息,再与采样区域的局部梯度信息融合得到特征点描述子;接着利用曼哈顿距离与切比雪夫距离的线性组合代替欧氏距离完成特征点的稀疏匹配;最后利用稀疏匹配结果作为种子点对进行同步生长,在多约束条件下得到最终的稠密匹配结果。在Oxford数据集上的实验证明了改进的稀疏匹配算法的准确率与有效匹配点对数量都高于SIFT算法,在增量式SFM系统中的实验证明了稀疏匹配与稠密匹配的组合算法可以获得更好的重建效果。 相似文献
10.
本文基于改进Harris角点检测算法,对遥感影像匹配采用优化的Harris算子方法进行了研究.根据高分辨率遥感影像特点,提出了一种新型的影像匹配方法,其中充分融合了SIFT描述符和Harris算法.结果显示,该影像匹配方法能够得到高分辨率遥感影像匹配效果,并且与传统方法相比其还具有旋转不变性特征.本文算法在提高匹配速度的同时,匹配精度只发生了较小的降低.相对于基于SIFT的匹配方法,本文匹配方法在特征点匹配上耗时较少,匹配精度比SIFT匹配方法提高了4.18个百分点. 相似文献
11.
基于图像尺度空间的几何不变特征点提取算法 总被引:1,自引:1,他引:1
图像特征点的提取是实现抗几何攻击数字水印算法的重要步骤,所提取的特征点是否鲁棒,将直接影响抗几何攻击水印的鲁棒性.Harris—Laplace角点检测方法是一种多尺度抗几何攻击角点提取方法,但计算比较复杂.将Harris.Laplace角点检测方法进行改进,把直接分析图像局部灰度值的角点提取方法与图象尺度空间的思想相结合,并兼顾多尺度的不同权值,则既可以保证角点抵抗一般几何攻击的鲁棒性,又减少计算复杂度的,根据此思路提出了加权平均Harris-Laplace角点检测方法来提取特征点.实验结果表明,该算法提取的图像特征点不仅具有很好的抵抗图像裁剪、几何缩放能力,而且计算复杂度明显低于相同重复检测率的Harris—Laplace角点检测算法. 相似文献
12.
13.
红外图像与可见光图像记录着地物的不同属性信息,两者融合能够优势互补,弥补单一数据源信息的不足。然而由于两者成像原理不同,热红外传感器与可见光传感器对同一场景获取的图像灰度差异较大,二者图像误匹配多,融合难度大。本文在分析红外与可见光图像共有特征的基础上,提出了一种基于SIFT与ORB特征检测的匹配方法,利用SIFT算子与ORB算子同时进行特征点检测,先基于RANSAC对SIFT匹配得到的同名点进行筛选,同时结合最近邻比次近邻算法获取ORB匹配点,再利用SIFT匹配点对ORB匹配点进行距离和角度的几何约束进一步剔除误匹配,最终得到特征点分布均匀、可靠度更高的匹配结果,解决因灰度差异较大产生的匹配效果不佳的问题。利用4组红外与可见光图像进行实验,结果表明,本文算法特征点正确匹配数量相较于SIFT分别提高了约3.7倍、3.2倍、3.6倍、3倍,大幅地提高了红外与可见光图像的匹配数量,为两者间的匹配提供了一种有效的方法。 相似文献
14.
15.
对于图像的多尺度特征点提取及匹配存在提取特征有限、算法复杂度高、处理速度慢的问题,提出了一种利用多尺度Harris角点方法提取图像中物体边界特征点,采用二维高斯拉普拉斯算子检测图像斑点信号,并基于SIFT特征描绘子计算特征描绘子相似度来完成匹配的方法.该方法充分利用FPGA的并行性特点,通过降低多尺度Harris角点检测、斑点提取和SIFT特征描绘子生成算法的复杂度,在FPGA中实现了图像多尺度特征点的快速提取及匹配.通过对多组图片进行对比测试验证,该方法相对于软件实现方法具有处理速度快,而图像主要特征点不丢失的特点. 相似文献
16.
17.
姿态变化和光照干扰对于人脸识别的准确率和效率有很大影响。针对这一问题,文中采用结合Gabor特征和SIFT特征的人脸识别方法进行识别,提取一幅人脸图像的多个方向和多个尺度的Gabor特征,并将提取得到的Gabor特征图像进行分块。对分块后的子图像进行提取SIFT特征的操作,将得到的Gabor特征全部SIFT向量级联作为最终特征向量。使用主成分分析方法对得到的最终特征向量进行降维处理,随后使用最小二乘支持向量机进行训练识别。在FERET人脸数据库中进行的实验结果表明,相对于传统单一的人脸识别方法,利用本文方法在姿态变化和光照干扰情况下对人脸识别的准确率达到98.1%,证明了新算法的有效性。 相似文献
18.
本文通过对已有图像拼接算法的分析研究,改进了拼接算法中的特征点匹配问题。首先利用Harris角检测算法提取特征点,然后通过归一化相关法进行初始匹配,接着引入马氏(Mahalanobis)距离,实现图像的精确匹配。最后通过加权平均的方法完成图像的融合。实验证明该方法能有效地去除伪匹配特征点对,降低了误匹配的概率,是一种有效的图像拼接方法。 相似文献
19.
针对传统尺度不变特征变换(Scale Invariant Feature Transform,SIFT)算法存在特征点冗余和计算量大等问题,提出一种基于双预筛选的强鲁棒性SIFT算法.首先在构造差分空间之前,利用像素点8邻域标准差相似度方法对特征点进行预筛选,然后利用极值检测方法对特征点进行精确定位.针对传统随机采样一... 相似文献
20.
简述了摄像机标定的原理,分别采用Harris角点提取法和改进的Harris角点提取法提取角点的两组图像坐标,采用Tsai标定法标定,并使用标定结果重构世界坐标,比较了两者的误差. 相似文献