首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial populations focused on predominant yeast species and lactic acid bacteria (LAB) in 15 commercial makgeolli brands, where a fungal starter nuruk was used were examined. Viable yeast counts were obtained on yeast potato dextrose (YPD) and MRS agar containing sodium azide. MRS-C (0.1% cycloheximide supplemented) was used for selective counts of LAB. Saccharomyces cerevisiae was found to be predominant in the 15 samples tested, with an average count of 4.6×107 CFU/mL. Contrary to the earlier studies, Lactobacillus plantarum and Weissella cibaria were shown as predominant LAB species with an average count of 1.7×107 CFU/mL. Surprisingly, as many as 7 log viable cells/mL were present at the ethyl alcohol concentration of 6–7%. The data from real-time PCR also indicated that the yeast populations remains almost constant during the refrigerated storage of 12 days, while that of LAB decrease slightly first 9 days and increase after then, despite the overall increase in acidity. Data from the differential microbial counts suggest that yeast S. cerevisiae might be associated with 2 LAB species, L. plantarum and W. cibaria, under ethyl alcohol stress during the turbid rice wine fermentation.  相似文献   

2.
Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile‐filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture‐dependent methods and PCR‐DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR‐DGGE technique coupled with the culture‐dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by‐products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.  相似文献   

3.
This study assessed the levels of microbial contaminants in liquid, compressed and dry commercial baker's yeasts used as starters in breadmaking. Eumycetes, Enterobacteriaceae, total and fecal coliforms, Bacillus spp., and lactic acid bacteria (LAB), in particular enterococci, were quantified. Results obtained in this study highlighted that baker's yeast could represent a potential vehicle of spoilage and undesirable microorganisms into the baking environment, even if these do not influence the leavening activity in the dough, as ascertained by rheofermentometer analysis. Different microbial groups, such as spore‐forming bacteria and moulds, were found in baker's yeast starters. Moreover, different species of LAB, which are considered the main contaminants in large‐scale yeast fermentations, were isolated and identified by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA sequencing. The most recurrent species were Lactobacillus plantarum, Enterococcus faecalis, and Enterococcus durans, isolated from both compressed and dry starters, whereas strains belonging to Leuconostoc and Pediococcus genera were found only in dry ones. Nested‐Polymerase Chain Reaction (Nested‐PCR) and Randomly Amplified Polymorphic DNA–PCR (RAPD‐PCR) were also used to highlight the biodiversity of the different commercial yeast strains, and to ascertain the culture purity.  相似文献   

4.
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.  相似文献   

5.
In this study, we have investigated the microbial diversity and stability in the Tibetan kefir during the primary cultivation and subcultivation processes via a combination of culture‐independent and culture‐dependent methods. According to the culture‐independent methods, the profiles of PCR‐DGGE (polymerase chain reaction–denaturing gradient gel electrophoresis) indicated that nine microbial species were predominant at different cultivation stages; seventy four isolates of seven predominant species were obtained and identified via the culture‐dependent methods. PCR‐DGGE further confirmed that Lactobacillus kefiranofaciens, Lactobacillus kefiri, Lactobacillus paracasei, Streptococcus thermophilus, Kazachstania unispora and Saccharomyces cerevisiae were the most dominant species in the Tibetan kefir during the process of primary cultivation, among which Lb. kefiri, Lb. paracasei and K. unispora showed relative strong stability during both the processes of primary cultivation and subcultivation. These findings suggested that some isolates of the three species possessed the potentiality of being used in the development of direct vat set (DVS) starters for the production of Tibetan kefir and the related products.  相似文献   

6.
The goal of this study was the characterisation of indigenous lactic acid bacteria (LAB) and yeasts isolated from nine white pickled (BG) and nine fresh soft (ZG) artisanal cheeses collected in Serbia and Croatia. While LAB were present in all of the cheeses collected, yeasts were found in all BG cheeses but only in three ZG cheese samples. High LAB and yeast species diversity was determined (average H′L = 0.4 and H′Y = 0.8, respectively). The predominant LAB species in white pickled (BG) cheeses were Lactococcus lactis, Lactobacillus plantarum, and Leuconostoc mesenteroides, while in fresh soft (ZG) cheeses the most dominant LAB species were L. lactis, Enterococcus faecalis, and Leuconostoc pseudomesenteroides. Among the 20 yeast species found, Debaryomyces hansenii, Candida zeylanoides, and Torulaspora delbrueckii were found to be predominant in BG cheeses, while Yarrowia lipolytica was predominant in ZG cheeses. The characterisation of metabolic and technological potentials revealed that 53.4% of LAB isolates produced antimicrobial compounds, 44.3% of LAB strains showed proteolytic activity, while most of the yeast species possessed either lipolytic or proteolytic activity. In conclusion, the results obtained in this study showed that the composition of LAB and yeast populations in white pickled and fresh soft cheeses is region specific. The knowledge gained in this study could eventually be used to select region specific LAB and yeast strains for the production of white pickled and fresh soft artisanal cheeses with geographically specific origins under controlled conditions.  相似文献   

7.
The effects of yeasts on the survival of probiotic and non-probiotic lactic acid bacteria (LAB) were studied in fermented milk under non-refrigerated conditions (30 °C) with a view to develop ambient-stable fermented milk with live LAB. Five yeasts tested (Saccharomyces bayanus, Williopsis saturnus var. saturnus, Yarrowia lipolytica, Candida kefyr and Kluyveromyces marxianus) enhanced the survival of Lactobacillus bulgaricus (but not Streptococcus thermophilus) in a mixed yoghurt culture in yoghurt by ~ 102 to 105-fold. Seven yeasts examined (Candida krusei, Geotrichum candidum, Pichia subpelliculosa, Kloeckera apiculata, Pichia membranifaciens, Schizosaccharomyces pombe and Y. lipolytica) improved the survival of Lactobacillus rhamnosus in fermented milk by ~ 103 to 106-fold. W. saturnus var. saturnus enhanced the survival of Lactobacillus acidophilus, L. rhamnosus (probiotic) and Lactobacillus reuteri by up to 106-fold, but the same yeast failed to improve the survival of Lactobacillus johnsonii (probiotic), S. thermophilus and L. bulgaricus in fermented milk. These results provide definitive evidence that yeasts possess stability-enhancing effects on LAB and that the specific effects of yeasts on LAB stability vary with yeasts as well as with LAB. However, the molecular mechanism of such interaction of yeasts with LAB remains to be found.  相似文献   

8.
The fermentation of type I sourdough was studied for 20 d with daily back‐slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture‐dependent and culture‐independent PCR‐DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed.  相似文献   

9.
Four types of sourdoughs (L, C, B, Q) from artisanal bakeries in Northern Italy were studied using culture-dependent and culture-independent methods. In all samples, the yeast numbers ranged from 160 to 107 cfu/g, and the numbers of lactic acid bacteria (LAB) ranged from 103 to 109 cfu/g. The isolated LAB were sequenced, and a similarity was noted between two samples (C, Q), both in terms of the species that were present and in terms of the percentage of isolates. In these two samples, Lactobacillus plantarum accounted for 73% and 89% of the bacteria, and Lactobacillus brevis represented 27% and 11%. In the third sample (B), however, the dominant LAB isolate was Lb. brevis (73%), while Lb. plantarum accounted for only 27%. The fourth sourdough (L) was completely different from the others. In this sample, the most prominent isolate was Weisella cibaria (56%), followed by Lb. plantarum (36%) and Pediococcus pentosaceus (8%). In three out of four samples (L, C and Q), all of the yeasts isolated were identified as Saccharomyces cerevisiae, yet only Candida humilis (90%) and Candida milleri (10%) were isolated in the fourth sample (B). The microbial ecology of the sourdoughs was also examined with direct methods. The results obtained by culture-independent methods and DGGE analysis underline a partial correspondence between the DNA and RNA analysis. These results demonstrate the importance of using a combined analytical approach to explore the microbial communities of sourdoughs.  相似文献   

10.
Export of cocoa beans is of great economic importance in Ghana and several other tropical countries. Raw cocoa has an astringent unpleasant taste and a spontaneous fermentation is the first step in a process leading to cocoa beans with the characteristic cocoa flavour and taste. The microbiology of Ghanaian cocoa fermentations was investigated using culture-dependent and culture-independent methods. Samples were collected at 12 hour intervals during 96-144 hour tray and traditional heap fermentations. Yeast, Lactic Acid Bacteria (LAB), Acetic Acid Bacteria (AAB) and Bacillus spp. were enumerated on suitable substrates and identified using phenotypic and molecular methods. The yeast and bacterial micro-populations involved in the cocoa fermentation were further investigated using the culture-independent method Denaturing Gradient Gel Electrophopresis (DGGE). A microbiological succession was observed during the fermentations. At the onset of fermentation yeasts were the dominating microorganisms. Lactic Acid Bacteria became dominant after 12-24 h of fermentation and remained predominant throughout the fermentations with AAB reaching high counts in the mid phase of fermentation. Bacillus spp. were only detected during heap fermentations where they reached high numbers during the later stages of fermentation. Hanseniaspora guilliermondii was the predominant yeast during the initial phase and Pichia membranifaciens during the later phases of fermentation. A number of other yeast species including three putatively undescribed species were isolated during the fermentations. Lactobacillus fermentum was the dominant LAB in most samples. Several other LAB including Lactobacillus plantarum, Leuconostoc pseudomesenteroides, Leuconostoc pseudoficulneum, Pediocococcus acidilactici and a putatively undescribed LAB species were detected during the fermentations. Acetobacter syzygii, Acetobacter pasteurianus and Acetobacter tropicalis were the predominant AAB in all investigated fermentations. During the later stages of heap fermentation Bacillus licheniformis and occasionally other Bacillus spp. were detected in high numbers. In general the culture-based findings were confirmed using DGGE. However, DGGE indicated that Lc. pseudoficulneum plays a more important role during the fermentation of cocoa than expected from the culture-based findings as it yielded a strong band in most DGGE fingerprints. Cluster analysis of the DGGE fingerprints revealed that the DGGE fingerprints clustered according to fermentation site. Within each fermentation site the profiles clustered according to fermentation time. The DGGE method seems to offer a relatively fast and reliable tool for studying yeast and bacterial dynamics during cocoa fermentations.  相似文献   

11.
The purpose of this study was to evaluate the evolution of lactic acid bacteria (LAB) and yeasts during the fermentation of tarhana produced with some pasteurised ingredients and carried out at 30 and 40 °C. The chemical parameters were those typical for tarhana production. Coliform bacteria were not detected during fermentation, while LAB and yeasts were in the range 107-108 colony forming units (CFU) g−1. Plate counts showed an optimal development of both fermenting microbial groups and the differences in cell concentrations were not significant (P > 0.05). LAB were isolated during fermentation and grouped on the basis of phenotypic and polymorphic characteristics. LAB isolates were identified by a combined genetic approach consisting of 16S/23S rRNA intergenic spacer region (ITS) and partial 16S rRNA gene sequencing as Pediococcus acidilactici, Lactobacillus plantarum and Lactobacillus brevis. Hence, the pasteurisation of the vegetable ingredients, excluded wheat flour, enhanced the hygienic conditions of tarhana without influencing the normal evolution of LAB. However, the fermentation at 40 °C favoured pediococci, while the production at 30 °C was mainly characterised by lactobacilli. Yeasts, identified by the restriction fragment length polymorphism (RFLP) of the 5.8S ITS rRNA gene, were mainly represented by the species Saccharomyces cerevisiae in both productions.  相似文献   

12.
Abstract

This paper is the first report on the microbial population and predominant lactic acid bacteria (LAB) of two soft‐varieties (mild and strong flavoured) of chhurpi., a traditional cheese product of the Sikkim Himalayas. The enzymatic profiles and percentage hydrophobicity (as one criterion of potential adhesion capability) of the predominant LAB were also studied. The LAB, yeasts and viable mesophilic microbial numbers ranged from 7.6–7.9, 7.0–7.4 and 7.7–8.0 log10 cfu/g respectively. The predominant LAB were identified as Lactobacillus plantarum, Lb. curvatus, Lb. fermentum, Lb. paracasei subsp. pseudoplcmtarum and Leuconostoc mesenteroides. They produced a wide spectrum of enzymes and also exhibited similar patterns of enzymatic activity between species. In comparison to the peptidases, they showed relatively weak esterase and lipase activities. No proteinase activity was detected. Most strains had a high degree of hydrophobicity. The results are discussed in relation to the possible role of the strains in food processing.  相似文献   

13.
Gluten‐free (GF) sourdough was prepared from wheat sourdough and analysed both in fresh (GFS) and dried forms (DGFS). The gluten content in each GF sourdough sample was <20 mg kg?1. The dough leavening capacity and the properties of the bread samples were investigated and compared to those of bread prepared using bakery yeast (Saccharomyces cerevisiae). Two commercial rice‐based mixtures (different for the presence/absence of buckwheat flour) were used to prepare bread samples. In GFS, lactic acid bacteria (LAB) and yeasts were found in amounts corresponding to 108 and 107 CFU g?1, respectively, whereas both LAB and yeasts were detected in lower amounts (about 106 CFU g?1) in DGFS. When used in bread‐making, both GFS types produced significant dough acidification and exhibited good dough development during proofing, resulting in loaves with specific volume values between 3.00 and 4.12 mL g?1, values similar to those obtained for reference bread (3.05÷4.15 mL g?1). The use of GFS was effective in lowering the bread staling rate during storage for up to 7 days.  相似文献   

14.
In this study, the influence of the addition of a commercial wine yeast (Saccharomyces cerevisiae) at inocula of 1 × 104 to 1 × 107 cells/ml in Emir must was investigated with a focus on yeast growth, fermentation rate, ethyl alcohol and flavour compound formation. Spontaneous fermentation without inoculation was also performed. Higher peak counts were observed with higher amounts of S. cerevisiae yeast. Addition of various amounts of yeast led to the earlier disappearance of non‐Saccharomyces yeasts. The fermentation rate was improved with higher amounts of yeast, but ethanol production was not affected. Concentrations of higher alcohols increased with increasing inoculum levels, especially inoculum sizes of 1 × 106 cells/ml and 1 × 107 cells/ml. The amount of ethyl acetate was reduced with increased inoculum levels.  相似文献   

15.
Classical microbiological methods in association with molecular methods (DNA amplification, Temperature Gradient Gel Electrophoresis (TGGE) and Denaturing Gradient Gel Electrophoresis (DGGE) were used. These methods, developed to rapidly analyze microbial communities on the basis of sequence‐specific separation of DNA amplicons, allowed the detection of DNA differences in the amplicons tested and the identification of the strains analyzed by the comparison of unknown sequences with sequences of known species. TGGE allowed the comparison of the different Saccharomyces cerevisiae strains used in brewing while DGGE allowed the identification of lactic acid bacteria (LAB) in beer. These methods are a reliable tool for fast comparison of strains of Saccharomyces cerevisiae collected from different craft breweries where they were used as starters to check the presence of possible yeast contaminants in the brewing process and for rapid LAB identification.  相似文献   

16.
Produced from raw unpasteurized milk, nunu is a spontaneously fermented yoghurt-like product made in Ghana and other parts of West Africa. Despite the importance of nunu in the diet of many Africans, there is currently only limited information available on the microorganisms associated with nunu processing. With the aim of obtaining a deeper understanding of the process and as a first step towards developing starter cultures with desired technological properties for nunu production, a microbiological characterization of nunu processing in three different towns in the Upper East region of Ghana, namely Bolgatanga, Paga and Navrongo, was carried out. Lactic acid bacteria (LAB) and yeasts associated with nunu processing were isolated and identified using a combination of pheno- and genotypic methods including morphological and carbohydrate fermentation tests, (GTG)5-based rep-PCR, multiplex PCR, and 16S and 26S rRNA gene sequencing. The LAB counts during nunu processing increased from 4.5 ± 0.4 log cfu/ml at 0 h to 8.7 ± 1.8 log cfu/ml at 24 h of fermentation while yeasts counts increased from 2.8 ± 1.2 log cfu/ml at 0 h to 5.8 ± 0.5 log cfu/ml by the end of fermentation. Lactobacillus fermentum was the dominant LAB throughout the fermentations with Lactobacillus plantarum and Leuconostoc mesenteroides playing prominent roles during the first 6–8 h of fermentation as well. Less frequently isolated LAB included Lactobacillus helveticus, Enterococcus faecium, Enterococcus italicus, Weissella confusa and a putatively novel Lactococcus spp. The yeasts involved were identified as Candida parapsilosis, Candida rugosa, Candida tropicalis, Galactomyces geotrichum, Pichia kudriavzevii and Saccharomyces cerevisiae with P. kudriavzevii and S. cerevisiae being the dominant yeast species.  相似文献   

17.
The water buffalo mozzarella cheese is a typical Italian cheese which has been introduced in the thriving Brazilian market in the last 10 y, with good acceptance by its consumers. Lactic acid bacteria (LAB) play an important role in the technological and sensory quality of mozzarella cheese. In this study, the aim was to evaluate the diversity of the autochthones viable LAB isolated from water buffalo mozzarella cheese under storage. Samples were collected in 3 independent trials in a dairy industry located in the southeast region of Brazil, on the 28th day of storage, at 4 ºC. The LAB were characterized by Gram staining, catalase test, capacity to assimilate citrate, and production of CO2 from glucose. The diversity of LAB was evaluated by RAPD‐PCR (randomly amplified polymorphic DNA‐polymerase chain reaction), 16S rRNA gene sequencing, and by Vitek 2 system. Twenty LAB strains were isolated and clustered into 12 different clusters, and identified as Streptococcus thermophilus, Enterococcus faecium, Enterococcus durans, Leuconostoc mesenteroides subsp. mesenteroides, Lactobacillus fermentum, Lactobacillus casei, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus helveticus. Enterococcus species were dominant and citrate‐positive. Only the strains of L. mesenteroides subsp. mesenteroides and L. fermentum produced CO2 from glucose and were citrate‐positive, while L. casei was only citrate positive. This is the first report which elucidates the LAB diversity involved in Brazilian water buffalo mozzarella cheese. Furthermore, the results show that despite the absence of natural whey cultures as starters in production, the LAB species identified are the ones typically found in mozzarella cheese.  相似文献   

18.
Isolation of lactic acid bacteria (LAB) and yeasts from the starter dough of Chinese steamed buns from four different commercial sources in Thailand was carried out. Thirty-one lactic acid bacteria and eight yeast strains were isolated. Total counts of LAB were from 1.8 × 104 to 108 colonies/g sample, whilst yeasts were very low from 10 to 2.3 × 102 colonies/g sample. The pH values of all starter doughs ranged from 3.36 to 3.52 and the Total Titratable Acidity (TTA) varied from 11.1 to 17.0 ml of 0.1 N NaOH/10 g dough. All LAB isolates were identified as Lactobacillus. The phenotypic characteristics were used to cluster all the LAB isolates into two major groups (Group A and Group B), with the B group subdivided into four groups. Phylogenetic analysis, based upon partial 16S rRNA gene sequences, showed that isolates of Group A, which all contained meso-diaminopimelic acid in their cell wall and produced dl-lactic acid, were closely related to Lactobacillus plantarum, whilst the strains of Group B that produced l-lactic acid were closely related to Lactobacillus casei. For yeasts, eight isolates based on the D1/D2 domain sequences of 26S rRNA were identified as Candida tropicalis, Pichia stipitis, Candida parapsilosis, Issatchenkia orientalis and Saccharomyces cerevisiae.  相似文献   

19.
Aloreña table olives are naturally fermented traditional green olives with a denomination of protection (DOP). The present study focused on Aloreña table olives manufactured by small and medium enterprises (SMEs) from Valle del Guadalhorce (Southern Spain) under three different conditions (cold storage, and ambient temperature fermentations in small vats and in large fermentation tanks). The microbial load of brines during fermentation was studied by plate counting, and the microbial diversity was determined by a culture-independent approach based on PCR-DGGE analysis. The viable microbial populations (total mesophilic counts, yeasts and molds, and lactic acid bacteria — LAB) changed in cell numbers during the course of fermentation. Great differences were also observed between cold, vat and tank fermentations and also from one SME to another. Yeasts seemed to be the predominant populations in cold-fermented olives, while LAB counts increased towards the end of vat and tank fermentations at ambient temperature. According to PCR-DGGE analysis, microbial populations in cold-fermented olives were composed mostly by Gordonia sp./Pseudomonas sp. and Sphingomonas sp./Sphingobium sp./Sphingopyxis sp. together with halophilic archaea (mainly by haloarchaeon/Halosarcina pallida and uncultured archaeon/uncultured haloarchaeon/Halorubrum orientalis) and yeasts (Saccharomyces cerevisiae and Candida cf. apicola). Vat-fermented olives stored at ambient temperature included a more diverse bacterial population: Gordonia sp./Pseudomonas sp., Sphingomonas sp./Sphingobium sp./Sphingopyxis sp. and Thalassomonas agarivorans together with halophilic archaea and yeasts (mainly S. cerevisiae and C. cf. apicola, but also Pichia sp., and Pichia manshurica/Pichia galeiformis). Some LAB were detected towards the end of vat fermentations, including Lactobacillus pentosus/Lactobacillus plantarum and Lactobacillus vaccinostercus/Lactobacillus suebicus. Only the tank fermentation showed a clear predominance of LAB populations (Lactobacillus sp., Lactobacillus paracollinoides, and Pediococcus sp.) together with some halophilic archaea and a more selected yeast population (P. manshurica/P. galeiformis). The present study illustrates the complexity of the microbial populations in naturally-fermented Aloreña table olives.  相似文献   

20.
Cowpea (Vigna unguiculata) paste used to prepare akara was collected from three Nigerian marketplaces and analyzed to determine populations and predominant types of bacteria, yeasts, and molds. Total aerobic microbial populations were initially high (106-108/g) and increased after 12 hr incubation at 30–32°C to ca. 109/g. Initial coliform populations were 102-104/g and decreased slightly between 6 hr and 12 hr; yeast/mold populations remained constant at 104-105/g. The average initial pH of 6.0 declined to 5.1 and 4.5 after 6 hr and 12 hr incubation, respectively. Predominant bacteria consisted of Enterobacter, Klebsiella, and Lactobacillus species; Candida species and Aspergillus mger were the predominant fungi isolated from the pastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号