首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合京唐高炉的生产实际,通过对京唐现场炉渣的取样和实验室分析,对京唐高炉渣的冶金性能进行评价,其炉渣的热稳定性及流动性均符合高炉冶炼要求。通过黏度试验研究,考察Al2O3以及二元碱度对低镁条件下炉渣黏度和熔化性温度的影响。试验结果表明,炉渣黏度随渣中Al2O3质量分数的增加而升高,随二元碱度的增加呈先降低后增加的趋势;炉渣的熔化性温度随渣中Al2O3质量分数和二元碱度的增加而升高;为保证低镁炉渣具有良好的流动性,当炉渣中MgO的质量分数保持为4.0%时,二元碱度可控制为1.19左右,Al2O3的质量分数控制为16%以下。  相似文献   

2.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

3.
依据承德建龙特殊钢有限公司当前的高炉冶炼情况,以钢厂渣为基准,利用黏度测试装置,分析了钒钛高炉渣的碱度、w(TiO_2)、w(MgO)对高炉渣黏度与熔化性温度的影响。研究结果表明:随高炉渣碱度提高,黏度和熔化性温度先降低,碱度继续提高到1.25时,炉渣黏度与熔化性温度迅速提高;随着高炉渣中w(TiO2)提高,黏度和熔化性温度呈先降低后升高的趋势;w(MgO)提高利于降低炉渣熔化性温度,不同w(MgO)情况下,炉渣熔化性温度最高为1297℃。碱度为1.15~1.20,w(TiO_2)小于10%,w(MgO)在12%~14%时,钒钛炉渣流动性较优。  相似文献   

4.
对京唐1号高炉低镁渣冶炼工业试验进行了总结。低镁渣主要矿物质组成为镁黄长石,当温度高于1450℃时,炉渣黏度低于0.5Pa·s,流动性良好,能够满足高炉冶炼的要求。高炉工业试验表明:①球团矿中的MgO从1.72%降低到1.27%时,炉渣镁铝比从0.47降低到0.42,中心气流相对变弱,软熔带上移;②通过适当提高炉渣碱度,优化高炉操作制度等,高炉顺行良好,燃料比由493 kg/t降低到490 kg/t,渣铁比也降低3 kg/t。  相似文献   

5.
为了解决高铝矿高炉冶炼时炉渣流动性差、渣铁难分、软熔带透气性变差等问题,基于邯钢高炉炉渣成分变化区间,结合理论计算和试验,研究了Al2O3含量对炉渣成分、性能的影响,获得了炉渣中Al2O3质量分数为15%~18%时适宜的镁铝比(w(MgO)/w(Al2O3))和二元碱度调控区间,并将研究结果用于指导邯钢高炉高铝矿冶炼。研究结果表明,在Al2O3质量分数由15%增加到16%过程中,炉渣黏度随炉渣结构复杂化而逐渐增加,当温度为1 500℃时炉渣黏度一般小于0.4 Pa·s,不会影响高炉正常冶炼;当Al2O3质量分数由16%增加到17%时,由于炉渣结构不断复杂化以及高熔点镁铝尖晶石相的析出,造成炉渣黏度陡增,此时炉渣二元碱度为1.25~1.30,渣中镁铝比为0.4~0.6,能够保证邯钢2号、8号高炉的炉况稳定和冶炼指标。当Al2O3...  相似文献   

6.
根据宣钢高炉冶炼条件采用RTW熔体物性测定仪,并以现场含钛高炉渣为基准,进行炉渣的黏度试验;研究不同的碱度、MgO和Al2O3含量对低钛高炉渣流动性能的影响。结果表明:试验用4种不同碱度炉渣黏度η-T曲线具有短渣特性,随炉渣碱度升高,炉渣η-T曲线短渣特性增强;在相同温度条件下炉渣黏度基本随碱度的升高而降低;MgO在一定范围内能起到降低炉渣黏度的作用,但MgO含量超过11%时,炉渣黏度随MgO含量的升高而增大;在试验条件下,低钛炉渣Al2O3含量对炉渣流动性质影响较小,生产中炉渣温度应保证在1400℃以上,炉渣Al2O3含量可以适当选高。  相似文献   

7.
为了改善高炉渣的排碱能力,通过正交法设计试验研究了不同炉渣碱度、MgO含量、Al2O3含量和温度对炉渣排碱能力的影响,并使用Factsage软件对试验用渣的黏度进行了计算。结果表明:碱度是影响炉渣排碱能力最重要的因素,温度次之,MgO、Al2O3含量变化对试验结果的影响较小;温度、碱度、MgO含量的升高都不利于排碱;具有较强排碱能力并可满足高炉冶炼要求的炉渣条件是:碱度R为0.90,MgO质量分数为8.00%,Al2O3质量分数为15.。0%~17.00%,炉渣温度为1500℃。  相似文献   

8.
以涟钢7号高炉软熔带炉料滴落形成的初渣为研究对象进行化学成分分析,采用分析纯试剂制备高炉炉渣渣样,探究CaO SiO2 MgO Al2O3 FeO五元渣系中,w(FeO)为3%~8%、w(Al2O3)为9%~13%及w(MgO)为2%~6%对涟钢7号高炉初渣黏度和熔化性温度的影响规律。结果表明,在碱度为1.373时,炉渣黏度随FeO质量分数的增加而减小,且FeO质量分数越大,炉渣的熔化性温度越低;当w(MgO)为7.38%、w(FeO)为5%时,炉渣黏度和熔化性温度都随着Al2O3质量分数的增加而减小;当w(Al2O3)为10.95%、w(FeO)为5%时,随着MgO质量分数的增加,炉渣黏度和熔化性温度都呈现降低趋势。  相似文献   

9.
穆红旺  张淑会  吕庆  孙艳芹 《钢铁》2012,47(6):18-21,50
采用RTW熔体物性测定仪研究了中性气氛条件下高铝中钛型高炉渣的黏度和熔化性温度,得到了碱度和化学成分等因素对其黏度和熔化性温度的影响规律。结果表明:在中性气氛条件下,当炉渣碱度从0.92提高到1.12时,炉渣的黏度降低、熔化性温度升高;随着渣中MgO含量的升高,炉渣的黏度先降低再升高;增加渣中Al2O3含量,炉渣的黏度显著提高。当Al2O3的质量分数大于14.75%后对炉渣黏度的影响不明显;当TiO2的质量分数在10.57%~14.57%范围内增加时,高铝中钛渣的黏度随之降低,即在理想条件下,TiO2含量和温度的增加对炉渣黏度影响均不大。但当高炉冶炼钒钛磁铁矿时,炉渣中的Ti(C,N)等高熔点物质随原料中TiO2含量的增加和炉温的上升而增加,将对炉渣黏度产生很大的影响,故冶炼时应控制高炉内TiO2的还原以少生成高熔点钛化合物,并且严格控制铁水温度以使高炉接受矿石钛含量。  相似文献   

10.
为了研究首钢A高炉炉渣降低MgO的可行性,利用FactSage热力学软件,从理论上解析首钢A高炉炉渣中MgO对固相析出温度和黏度的影响。研究发现,A高炉炉渣固相析出温度在1 400 ℃左右,炉渣在高炉炉缸中全为液相并具有较好的流动性。1 500 ℃下,现有炉渣组分在相图中液相区,若MgO含量降低,炉渣仍处在液相区。MgO质量分数在2.87%~7.37%区间变化时,随MgO含量升高,固相析出温度增加;MgO质量分数升高1%,炉渣固相析出温度升高约3.73 ℃。随MgO含量升高,炉渣黏度降低。1 500 ℃下,MgO质量分数升高1%时,炉渣黏度降低0.014 Pa·s。分析认为,炉缸热状态较好(铁水温度在1 480 ℃以上)时,适当降低MgO质量分数至6%,炉渣黏度不会受较大影响;炉缸热状态较差(铁水温度在1 480 ℃以下)时,不建议降低MgO含量。  相似文献   

11.
针对国内高炉炼铁原料中Al_2O_3含量不断提高和高炉炉渣中(MgO)/(Al_2O_3)偏高的情况,通过相图分析和对比高(MgO)/(Al_2O_3)和低(MgO)/(Al_2O_3)渣的炉渣粘度和熔化性温度,提出了当高炉采用低(MgO)/(Al_2O_3)渣制度时应采取的冶炼措施。分析表明,炉渣中MgO含量低时,可以通过适当提高二元碱度和炉渣过热度的方法保证炉渣的流动性,但二元碱度不易超过1.25,否则炉渣熔化性温度超过1 380℃,高炉操作抗波动能力下降。  相似文献   

12.
针对增加钒钛磁铁矿使用比例渣中TiO_2质量分数提高后,对二元碱度以及MgO、TiO_2和Al_2O_3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO_2质量分数为21.00%~25.00%、Al_2O_3质量分数为13.00%~16.00%、其他组元不变的条件下,随着二元碱度、MgO质量分数升高,熔化性温度升高;随着TiO_2质量分数升高,熔化性温度先升高后降低;随着Al_2O_3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO_2和Al_2O_3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO_2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

13.
为了进一步明确MgO对低铝高炉渣流动性和熔化性的影响机理,以酒钢高炉渣成分为基础,通过黏度试验并结合FactSage热力学软件分别研究了不同MgO质量分数的炉渣黏度、熔化温度、液相区变化以及炉渣冷却过程的物相变化。结果表明,炉渣黏度和熔化性温度随MgO质量分数的增加而降低,MgO质量分数控制在8%左右,可满足酒钢炉渣流动性的要求;随着MgO质量分数的增加,熔化区间增大,炉渣液相区远离CaO区域,向SiO_2和Al_2O_3区域扩大;冷却过程中,MgO质量分数的增加,有利于黄长石的形成,从而抑制硅灰石和假硅灰的形成。1 350℃时炉渣流动性受炉渣结构聚合度和渣中固相质量分数的双重影响,1 400℃以上炉渣流动性主要与其结构有关。低铝渣熔化性温度主要由炉渣结构聚合度和渣中镁黄长石质量分数共同决定。  相似文献   

14.
针对高铝渣特有的黏度高、流动性差、脱硫能力差的特点,济钢3200 m3高炉通过调整热制度和布料制度,在烧结时提高MgO含量,控制渣中镁铝比0.6,使渣中MgO含量在8%~11%,高炉的整体操作炉型适应了高铝渣的冶炼要求。在渣铁比升高43 kg/t的条件下,高炉生铁含硅降低,炉渣脱硫能力增强,基本杜绝了三类铁。  相似文献   

15.
针对增加钒钛磁铁矿使用比例渣中TiO2质量分数提高后,对二元碱度以及MgO、TiO2和Al2O3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO2质量分数为21.00%~25.00%、Al2O3质量分数为13.00%~16.00%、其他组? 槐涞奶跫拢孀哦疃取gO质量分数升高,熔化性温度升高;随着TiO2质量分数升高,熔化性温度先升高后降低;随着Al2O3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO2和Al2O3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

16.
含钛高炉渣熔化性温度的试验研究   总被引:1,自引:0,他引:1  
含钛高炉渣的熔化性温度是影响高炉炉渣冶金特性的关键因素。以工业生产含钛高炉渣为原料,进行正交试验研究,其结果表明:随着碱度的提高,熔化性温度上升,粘度也升高;MgO从6%增加到8%或8.5%时,熔化温度曲线温度转折点即熔化性温度从1 435℃降低到1 380℃;TiO2含量在16%~20%的条件下,渣中MgO在8%左右,Al2O3含量在9%~13%之间,TiO2对炉渣粘度与熔化性温度影响不大。  相似文献   

17.
以高炉生产中实际渣样为基础,检测不同炉渣成分对炉渣黏度和熔化性温度的影响,对降低炉渣中MgO含量的可行性进行研究。实验结果表明,当wAl2O3为15%,在炉况稳定,炉缸温度充沛的情况下,二元碱度较高(1.2左右),可将wMgO下降到4%~6%;二元碱度较低(1.1左右),可将wMgO下降到5%~6%,保证炉渣适宜的流动性,不影响高炉正常运行。同时结合CaO-SiO2-MgO-Al2O3相图和等黏度图分析,当炉渣中wMgO为5%,从1 500℃降为1 400℃时所对应的黏度值上升最快,这与实验数据相一致。  相似文献   

18.
以承钢现场渣为基准,研究了钛、镁、铝对炉渣黏度、熔化性温度和脱硫的影响。研究结果表明:在Ca OAl2O3-Si O2-Mg O-Ti O2五元渣系中,钛、镁、铝对炉渣性能的影响较大。随着Mg O质量分数增加,熔化性温度先降低后升高,黏度呈降低趋势,脱硫能力先升高后降低;随着Al2O3质量分数的增加,熔化性温度先降低后升高,黏度变化复杂,脱硫能力降低;随着Ti O2质量分数的增加,熔化性温度和黏度呈升高趋势,而脱硫能力降低。当炉渣碱度为1.12时,炉渣适宜成分:Mg O质量分数约为13.95%,Al2O3质量分数约为13.75%,Ti O2质量分数控制在10.57%以下。合理控制炉渣中钛、镁、铝的配比,对改善炉渣性能和提高高炉生产有重要意义。  相似文献   

19.
高於恺 《四川冶金》1991,13(1):46-51
本文论述了高炉造渣制度选择的原则和高MgO渣的冶炼特性,对重钢高炉适宜造渣制度的选择进行了探讨,提出了采用低钛高镁渣冶练,将炉渣二元碱度降低到1.20~1.25,渣中MgO增加到8~10%,三元碱度保持1.45~1.50的设想,工业试验结果表明,低钛高镁渣的冶练效果良好。  相似文献   

20.
碱度对CaO-SiO_2-Al_2O_3-MgO-TiO_2渣系黏度的影响   总被引:1,自引:0,他引:1  
针对重庆钢铁集团近年来增加澳矿使用量后,炉渣中Al2O3含量的增加对炉渣流动性的不利影响,对重钢高炉的炉渣性能进行了试验研究。以重钢高炉现场渣为基础,利用旋转黏度计测试了Al2O3质量分数为12%、Mg O质量分数为8%、Ti O2质量分数为5%、碱度为1.07~1.50时,Ca O-Si O2-Al2O3-Mg O-Ti O2渣系黏度变化情况;并测量了不同Ti O2含量时炉渣黏度变化情况。研究结果表明:在当前碱度范围内,随着二元碱度增加,炉渣黏度降低,当二元碱度超过1.35时,黏度降低趋势变平缓;炉渣中加入适量Ti O2能降低黏度,改善流动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号