首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Japan Atomic Energy Research Institute carries out research and development on accelerator-driven system (ADS) to transmute minor actinides and long-lived fission products in high-level radioactive waste. The system is composed of high intensity proton accelerator, lead-bismuth spallation target and lead-bismuth cooled subcritical core with nitride fuel. About 2500 kg of minor actinide is loaded into the subcritical core. Annual transmutation amount using this system is 250 kg with 800 MW of thermal output. This transmutation amount corresponds to the amount of minor actinides produced from 10 units of 1GWe power reactors annually. A superconducting linear accelerator with the beam power of 20–30 MW is connected to drive the subcritical core. To maximize the transmutation efficiency, the nitride fuel without uranium, such as (Np, Am, Pu)N, is selected. The nitride fuel irradiated in the ADS is reprocessed by pyrochemical process followed by the re-fabrication of nitride fuel. Many research and development activities are under way and planned in the fields of subcritical core design, spallation target technology, lead-bismuth handling technology, accelerator development, and minor actinide fuel development. Especially, to study and evaluate the feasibility of the ADS from physics and engineering aspects, the transmutation experimental facility (TEF) is proposed under a framework of the High-Intensity Proton Accelerator Project.  相似文献   

2.
The methodology of the efficiency comparison of the different ADS-burners is discussed. ADS with lead–bismuth coolant (fast neutron spectrum), molten salt ADS (intermediate spectrum) and heavy water ADS (thermal spectrum) are chosen as representatives for the comparison. The first results of the suggested approach are discussed.  相似文献   

3.
韩嵩  杨永伟 《核动力工程》2007,28(3):14-18,55
分析加速器驱动系统(ADS)钠冷金属燃料快堆重金属燃料不同核素对堆芯有效增殖系数(Keff)的影响,给出了燃料成分的确定方法,详细分析次锕系核素(MA)嬗变特性.运用耦合了MCNP4c3与ORJGEN2的三维燃耗程序COUPLE对堆芯进行稳态与燃耗计算.结果分析表明,调节燃料中239Pu的质量比例并使其在燃耗过程中保持稳定是使Keff达到设计值并在燃耗过程中保持稳定的有效手段.散裂中子引起堆芯内区较外区更硬的中子能谱,有利于提高MA的裂变截面与裂变吸收比.全堆MA嬗变支持比为8.3,具有较好的嬗变效果.由于堆芯内区的高通量,堆芯内外区的嬗变率有明显差异,将MA集中布置于内区有利于减少装料量,改善总体嬗变效果.  相似文献   

4.
A feasibility study on natural uranium spallation target in accelerator-driven system (ADS) for minor actinide (MA) transmutation was performed. As a result of comparative study of uranium and lead-bismuth (PbBi) targets in the bare case without blanket surrounding, it was found that uranium target had better neutron generation performance, but limited by the geometrical size due to high neutron absorption in 238U. In ADS for MA transmutation, uranium used as target instead of PbBi also absorbs neutrons passing the target area.More realistic concept of pin type uranium spallation target cooled by liquid PbBi was considered aiming at enhancing spallation target performance in terms of neutron generation efficiency and operation temperature. The uranium pin target design had nothing better effects on neutron balance of such system than a conventional PbBi target in ADS and it was concluded that uranium target was not suitable for the full-scale ADS.  相似文献   

5.
The partitioning and transmutation technology is effective to reduce the environmental impact from disposition of high-level radioactive wastes and improve the efficiency of geological disposal. However, Am and Cm and their daughter nuclides are difficult to handle in the fuel cycle because of their high decay heat and radioactivity. These nuclides also give the chemical instability which harms the soundness of fuel pellet properties.

We propose a new system concept “actinide reformer”, which reforms Am and Cm into Pu by neutron capture reactions and decay. Am and Cm are separated from the PUREX reprocessing process and converted to chloride molten-salt fuel. Using liquid-type fuel, above mentioned defects can be compensated. Actinide reformer is an accelerator-driven system which is composed of a 10 MW-class cyclotron, a tungsten target and a subcritical core. Spent molten-salt fuel is reprocessed as an on-line fuel exchange manner to extract fission products and recover Pu to send back to a power generation cycle. The decay heat and neutron emission from the fuel with recovered Pu are smaller than those of MOX fuel with 5% of minor actinide addition. It expects no significant engineering difficulties and cost increase for construction of MOX fuel based reprocessing/fabrication plant and power reactors.  相似文献   


6.
One of the key milestones in the roadmap of the European accelerator-driven transmutation system (ADS) is the design and construction of the European experimental ADS (XADS). The window spallation target unit in the lead–bismuth eutectic (LBE) cooled reactor system is one of the basic options considered in the preliminary design study of XADS (PDS-XADS). This paper presents the computational fluid dynamics (CFD) analysis and the main results achieved for this option focusing on the coolability of the window. Steady-state as well as transient behavior, including beam interrupts and three major accident scenarios, has been analyzed using the CFD code CFX 5.6 with an advanced turbulence model. The required boundary conditions were provided by a one-dimensional system code. Based on the CFD analysis, the window geometry was modified in order to achieve sufficient cooling capability of the window under normal operating conditions. The transient behavior of the window temperature under beam trip conditions shows the importance of the beam interrupt duration to the thermal stress load of the window structural material. Further transient analysis of three major accidental scenarios, i.e., beam focusing, loss of heat sink, and beam intensity jump, indicates that the beam focusing accident gives the most serious safety concern. In this case, window failure occurs in less than 1 s after the start of the beam focusing.  相似文献   

7.
This study demonstrates, for the first time, the principle of nuclear transmutation of minor actinide (MA) by the accelerator-driven system (ADS) through the injection of high-energy neutrons into the subcritical core at the Kyoto University Critical Assembly. The main objective of the experiments is to confirm fission reactions of neptunium-237 (237Np) and americium-241 (241Am), and capture reactions of 237Np. Subcritical irradiation of 237Np and 241Am foils is conducted in a hard spectrum core with the use of the back-to-back fission chamber that obtains simultaneously two signals from specially installed test (237Np or 241Am) and reference (uranium-235) foils. The first nuclear transmutation of 237Np and 241Am by ADS soundly implemented by combining the subcritical core and the 100 MeV proton accelerator, and the use of a lead-bismuth target, is conclusively demonstrated through the experimental results of fission and capture reaction events.  相似文献   

8.
This study assesses the feasibility of designing a Molten Salt Reactor (MSR) using the salt mixture of LiF (15 mol%), NaF (58 mol%) and BeF2 (27 mol%) to be critical when fuelled with TRU from LWR spent fuel without exceeding the actinides solubility limit and while extracting fission products at realistic rates. The first part of the study investigated the graphite-to-MS volume ratio on the neutron balance, transmutation characteristics and graphite lifetime. It is found that a core without graphite moderator is the preferred design option; it offers the best neutron balance, most compact design and alleviated graphite lifetime problem. The second part of the study investigated sensitivity of the epithermal spectrum core to the feed composition, power density, fission products residence time and actinides loss fraction. It is found that the transmutation effectiveness improves with increasing power density and that the shorter the LWR spent fuel cooling time is, the better becomes the MSR neutron balance. The optimal MSR design offers a remarkably high transmutation capability – fissioning of as high as 99.8% of the TRU fed. The transmutation capability of the MSR is also rated in terms of final waste radiotoxicity, decay heat, spontaneous fission neutrons emission, fissile and 237Np inventory.  相似文献   

9.
Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas-cooled pebble bed accelerator driven system, TADSEA (Transmutation Advanced Device for Sustainable Energy Application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, cooled by helium which enables high temperatures (in the order of 1200 K), to generate hydrogen from water either by high temperature electrolysis or by thermochemical cycles. For designing this device several configurations were studied, including several reflectors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW of thermal power. In this paper new studies performed on deep burn in-core fuel management strategy for LWR waste are presented. The fuel cycle on TADSEA device has been analyzed based on both: driven and transmutation fuel that had been proposed by the General Atomic design of a gas turbine-modular helium reactor. The transmutation results of the three fuel management strategies, using driven, transmutation and standard LWR spent fuel were compared, and several parameters describing the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain, are also presented.  相似文献   

10.
The impact of different spallation models and parametrisation of nucleon–nucleus interactions in the particle transport code PHITS on the nuclear characteristics of an accelerator-driven system (ADS) is investigated. Cut-off neutrons below 20 MeV calculated using the default option of the current spallation model (i.e. Liège intranuclear cascade (INC) model version 4.6, INCL4.6) are found to be 14% less than those calculated by the old spallation model (i.e. Bertini INC model). This decrease increases the proton beam current that drives the 800-MW thermal power and impacts various ADS parameters, including material damage, nuclear heating of the proton beam window and the inventory of spallation products. To validate these options based on the ADS neutronics design, we conduct benchmark calculations of the total and non-elastic cross sections, thick target neutron yields and activation reaction rate distributions. The results suggest that Pearlstein–Niita systematics, which is a default option of the nucleon–nucleus interaction parametrisation, would be the best option and that Bertini INC is better suited for cut-off neutrons than INCL4.6. However, because of the difficulty in making a definite conclusion on the spallation models, we conclude that relatively large uncertainty in the cut-off neutrons, which is the difference between the two spallation models (i.e. 14%), should be considered.  相似文献   

11.
In order to perform the parametric survey for an accelerator-driven system (ADS) core with the subcriticality adjustment mechanism, a new calculation code system, ADS3D, was developed on MARBLE which is a comprehensive and versatile framework for reactor analysis. The application of ADS3D was also demonstrated on the neutronics design of ADS operated by control rod (CR) movement. Through the neutronics calculation, it was shown that the maximum proton beam current was decreased from 20.5 to 11.6 mA due to the switch from beam-operated to CR-operated core.  相似文献   

12.
The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25.  相似文献   

13.
Since 1998, SCK?CEN, Mol, Belgium,—in partnership with many European research laboratories—is designing a multipurpose Accelerator Driven System for R&D applications—MYRRHA. In parallel, an associated R&D support program is being conducted. MYRRHA aims to serve as a basis for the European experimental ADS providing protons and neutrons for various R&D applications. It consists of a LINAC proton accelerator delivering a 350MeV*5mA proton beam to a windowless liquid Pb-Bi spallation target that, in turn, couples to a Pb-Bi cooled, sub-critical fast core of 50MW thermal power. In this paper, we report on the status of the MYRRHA project at mid-2005 and the prospective towards its future implementation.  相似文献   

14.
The article devoted to assessment of present-day demand to nuclear data for transmutation problem, including the discussion of required accuracies, status and perspectives of nuclear data evaluation and development of nuclear models. The effect of nuclear data uncertainties on radiation damage of structural materials is discussed. An analysis of ISTC projects related to nuclear data measurement and evaluation is presented. The recommendations for differential, integral experiments and recommendations on the evaluated data preparation are presented.  相似文献   

15.
JAERI Takasaki in-air micro-PIXE system for various applications   总被引:2,自引:0,他引:2  
In JAERI Takasaki, an in-air micro-PIXE system has been developed. This system enables multi-elemental mapping of samples in atmospheric environment with spatial resolution of 1 μm. Various research programs, such as biomedical research, dental study, environmental science and geology, have been started in recent years. Several related techniques for these applications were developed. A FTP server has been operated for the remote collaborators to share experimental data over the internet. We have developed image processing methods for elemental concentration analysis and a new beam monitoring technique in thick target irradiation.  相似文献   

16.
The accelerator-driven system (ADS) is under development in several countries to reduce the burden for conditioning and disposal of the high-level radioactive waste (HLW) by transmuting minor actinide (MA). It is expected that the fuel shuffling can make the power distribution flat and transmute MA effectively by using only one kind of fuel composition. But the total number of calculation cases becomes huge for finding the globally optimum case. In order to find the best shuffling scheme for MA transmutation by ADS, we attempt to develop a calculation code within an acceptable time by employing dynamic programming. It is used successfully for a cylindrical core with three fuel regions with 20 times of fuel shuffling.  相似文献   

17.
Research and development on nuclear hydrogen production using HTGR at JAERI   总被引:3,自引:0,他引:3  
JAERI has been conducting R&D on HTGR and on hydrogen production using HTGR. The reactor technology has been developed using HTTR installed at Oarai site of JAERI. HTTR reached its full power operation of 30MW in 2001 and demonstrated reactor outlet helium temperature of 950°C in April 2004. As for the hydrogen production technology, the thermo-chemical IS process is under study. The process control method for continuous hydrogen production has been examined using a bench-scale apparatus. Also, studies are underway on process improvement and on materials of construction to be used in the corrosive environment. As for the system integration of HTGR and the hydrogen production plant, R&D is underway aiming to develop technologies for safe and economical connection. It covers safety technology against explosion, safety technology against radioactive materials release, control technology to prevent the thermal disturbance from hydrogen production plant to reactor, etc.  相似文献   

18.
Subcritical reactors, also called Accelerator Driven Systems (ADS), are specifically studied for their capacity in transmuting Minor Actinides (MA). Nuclear fuel cycle scenarios involving MA transmutation in ADS are widely researched. The nuclear fuel cycle simulation tool code CLASS (Core Library for Advanced Scenarios Simulations) is dedicated to the inventory evolution calculation induced by a complex nuclear fleet. For managing reactors, the code CLASS includes physic models. Loading models aim to provide the fuel composition at beginning of cycle according to the stocks isotopic composition and the reactors requirements. A cross section predictor aims to provide mean cross sections needed for solving Bateman equations. Physic models are built from reactors calculation set ahead of the scenario calculation. An ADS standard composition at BOC is a mixture of plutonium and MA oxide. The high number of fissile isotopes present in the subcritical core leads to an issue for building an ADS fuel loading model. A high number of isotopic vector at BOC is needed to get an exhaustive simulation set. Also, ADS initial reactivity is adjusted with an inert matrix which induces an additional degree of freedom. The building of an ADS fuel loading model for CLASS requires two steps. For any heavy nuclide composition at beginning of cycle, the core reactivity must be imposed at a subcritical level. Also, the reactivity coefficient evolution should be maintained during the irradiation. In this work, the MgO volume fraction is adjusted to reach the first requirement. The methodology based on a set of reactor simulations and neural network utilization to predict the MgO volume fraction needed to reach a wanted keff for any initial composition is presented. Also, a complete neutronic study is done that highlight the effect on MgO on neutronic parameters. Reactor simulations are done with the transport code MCNP6 (Monte Carlo N particle transport code). The ADS geometry is based on the EFIT (European Facility for Industrial-Scale Transmutation) concept. The simulation set is composed of more than 8000 randomized runs from which a neural network has been built. The resulting MgO prediction method allows reaching a keff at 0.96 and the distribution standard deviation is around 200 pcm.  相似文献   

19.
To minimize the ecological burden originating in nuclear fuel recycling, a new R&D strategy, the Adv.-ORIENT (Advanced Optimization by Recycling Instructive Elements) cycle was set forth. In this context, mutual separation of f-elements, such as minor actinide (MA)/lanthanide (Ln) and Am/Cm, are essential to enhance the MA (particularly 241Am) burning. Isotope separation before transmutation is also inevitably required in the case of some long-lived fission products (LLFPs) like 126Sn, 135Cs, etc. The separation and utilization of rare metal fission products (RMFPs: Ru, Rh, Pd, Tc, Se, Te, etc.) are offering a new direction in the partitioning and transmutation (P&T) field. 99Tc and 106Ru, well-known interfering nuclides in reprocessing, should be removed prior to the actinide stream. Separation of exothermic nuclides 90Sr, 137Cs as well as MA will significantly help to mitigate the repository tasks.

A key separation tool is ion exchange chromatography (IXC) by a tertiary pyridine resin having soft donor nitrogen atoms. This method has provided individual recovery of pure Am and Cm products with a Pu/U/Np fraction from irradiated fuel in just a 3-step separation. A catalytic electrolytic extraction (CEE) method by Pdadatom has been employed to separate, purify and fabricate RMFP catalysts. Differently functioned ion exchangers, e.g., ammonium molybdophosphate (AMP), have been investigated for the separation of Cs+. Theoretical and laboratory studies on the isotope separation of LLFPs were begun for 79Se, 126Sn and 135Cs.  相似文献   


20.
Plutonium recycling in new-generation fast reactors coupled with minor actinides (MA) transmutation in dedicated nuclear systems could achieve a decrease of nuclear waste long-term radiotoxicity by two orders of magnitude in comparison with current once-through strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号