首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The green and sintered densities,and tensile strength of sintered P/M steels produced by cold compaction,warm compaction,warm compaction combined with die wall lubrication(DWL)were measured under various compaction pressures using polytetrafluoroethylene(PTFE)emulsion as the die wall lubricant.The effects of warm compaction on the mechanical properties were studied.The tensile fracture behaviors of cold compaction and warm compaction were studied using scanning electron microscope(SEM).The results show that the density of sintered P/M steel prepared by warm compaction or warm compaction with DWL is higher than that by cold compaction under all compaction pressures.Meanwhile,the highest tensile strength is obtained by combination of warm compaction and die wall lubrication under all compaction pressures.The SEM results show that the fracture modes of the sintered samples prepared by cold compaction and warm compaction at 700 MPa are the mixed mode of ductile fracture and brittle fracture,and obvious dimples can be found in some regions.The fracture of sample prepared by cold compaction is uneven and has irregular and big pores,but that by warm compaction is relatively even and the pores are round mostly,and the samples have many obvious dimples on the whole fracture surface.  相似文献   

2.
The lubrication effectiveness of the composite lubricants, 50wt% ethylene bis-stearamide (EBS) wax +50wt% graphite and 50wt% EBS wax + 50wt% BN, during the powder metallurgy (P/M) electrostatic die wall lubrication and warm compaction was studied. The results show that the combination of 50wt% EBS wax and 50wt% graphite has excellent lubrication performance, resulting in fairly high green densities, but the mixture of 50wt% EBS wax and 50wt% BN has less beneficial effect. In addition, corresponding die temperatures should be applied when different die wall lubricants are used to achieve the highest green densities.  相似文献   

3.
Phenomenological Modeling of Warm Compaction and Experimental Verification   总被引:2,自引:0,他引:2  
A phenomenological modeling approach to establishing the warm compaction equation and curves by modifying the regression equation of the room-temperature compaction curve is presented. An enhanced factor of compacting pressure is introduced into the equation in order to reveal the effects of powder/die temperature and filling height of powders on green density. Compaction curves yielded from this equation are consistent with the experimental data of ATOMET grade iron powders. The curves show that the powder/die temperature should reduce as the filling heights of powders increase and that in some cases warm compaction can not give rise to a higher green density.  相似文献   

4.
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07-0.22 g/cm 3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm 3 at 120 ℃, and the maximum sintered density is 7.18 g/cm 3 at 80 ℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrepancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.  相似文献   

5.
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.  相似文献   

6.
为研究温拌沥青混合料成型温度对其路用性能的影响规律,采用旋转压实仪不同温度下成型分别添加Aspha-min、Sasobit和DAT温拌剂制备的沥青混合料,通过沥青混合料密度试验、浸水马歇尔稳定度试验及冻融劈裂试验测定各项指标,得到3种温拌沥青混合料的密实性及水稳定性随成型温度的变化规律,同时得到3种温拌沥青混合料在不同气候分区的最佳成型温度范围。结果表明:随着成型温度的升高,3种温拌沥青混合料的密实性均得到有效的改善,但并未表现出明显的规律性;不同成型温度下,DAT温拌沥青混合料的水稳定性最好;对于潮湿和湿润区,成型温度取105~130℃,即可保证温拌沥青混合料的水稳定性。  相似文献   

7.
Study on mechanical properties of warm compacted iron-base materials   总被引:9,自引:0,他引:9  
Mechanical properties of the warm compacted iron-base powder metallurgy materials were compared with those of conventional cold compacted materials. Factors such as compaction temperature, lubricant concentration and lubricant′s property were studied. A lubricant for warm compaction powder metallurgy was developed. An iron-based powder metallurgy material with a green density of 7.31 g/cm3 (a relative density of 92.5%) can be obtained by pressing the powder at 700 MPa and 175 ℃. The sintered materials have a density of 7.2 g/cm3, an elongation of 2.1% and a tensile strength of 751 MPa compared to 546 MPa using conventional cold compaction with the same lubricant and 655 MPa using warm compaction with other lubricant. Compact density and mechanical properties were influenced strongly by the compacting temperature. Although the best quality compacts can be obtained at 175 ℃, warm compaction within 165 to 185 ℃ can give high density compacts. Evidence shows that compact density depends on the friction coefficient of the lubricant.  相似文献   

8.
典型车用壳体零件温挤压成形工艺数值模拟   总被引:1,自引:0,他引:1  
采用刚塑性有限元法,借助DEFORM-3D软件对典型车用壳体零件温挤压成形过程中金属的流动情况进行了模拟,以成形栽荷为评价指标,对关键工艺参数进行了分析.结果表明:坯料温度和摩擦因数对载荷影响较大;模具预热温度对载荷影响不显著.基于Archard磨损模型对凹模的磨损情况进行模拟,分析了磨损原因,并提出改善方法,模拟结果将对车用壳体零件的实际挤压生产起到积极的指导作用.  相似文献   

9.
新型垃圾衍生燃料制备的研究   总被引:3,自引:0,他引:3  
以经预处理后的生活垃圾和少量煤为主要原料,在室温、无粘结剂条件下,采用不同的煤配比、成型压力等工艺参数,利用对辊成型机制备出了新型垃圾衍生燃料(refuse derived fuel,RDF)。测定并分析了RDF的机械强度、热稳定性、密度、反应活性等理化指标。结果表明:采用对辊成型机可以制备出合格的垃圾衍生燃料,煤的加入有助于RDF成型,RDF各项理化性质随煤配比、成型压力的不同而有规律的变化,同时得到试验条件下的较优工艺参数是煤配比30%、成型压力15MPa。  相似文献   

10.
冷温复合挤压工艺是广泛应用的一种少切削或无切削的新工艺,具有许多优点.介绍了地弹簧芯轴零件冷温挤压复合的数值模拟过程,通过分析不同的挤压参数和设计参数来观察其对挤压力、成形工件质量、工件应力分布、温度分布变化等的影响,从而达到选出最佳的工艺参数,优化工艺的目的.  相似文献   

11.
提出梯温充液拉深工艺,即在板料温充液拉深实验装置中的凹模和压料板表面分别打上有规律的孔,通过接触加热在板料上形成梯度分布温度场。通过有限元模拟0Cr18Ni9不锈钢板料筒形件拉深过程,对比分析均匀加热与梯温加热2种不同加热方式对板料成形性能的影响。研究表明,与均匀加热相比,梯温加热拉深工艺能进一步提高板料的极限拉深比。  相似文献   

12.
Measurement of friction coefficient in aluminum sheet warm forming   总被引:1,自引:0,他引:1  
Aluminum alloy sheets are used more and more to manufacture auto panels. Because the friction behavior is very complicated, it is necessary to study the friction during the aluminum sheet warm forming process. The author has designed a new probe sensor based on an online tribotest method which directly measures friction coefficient in the forming process. Experiments of cup drawing have been conducted and the friction coefficients under different forming conditions have been measured. The results indicate that the forming parameters, such as forming temperature, blankholding force and lubrication status have great effect upon the friction coefficient.  相似文献   

13.
压实温度对温拌NovaChip沥青混合料路用性能的影响   总被引:1,自引:0,他引:1  
在添加温拌剂(EvothermTM和Sasobit)的条件下,分别在压实温度为135、145、155、165℃时成型不同类型的混合料试件,并进行相关试验,以确定压实温度对NovaChip Type C型沥青混合料路用性能的影响并得出其合理的压实温度范围.试验数据分析显示:压实温度对NovaChip Type C的高温稳定性影响较为明显,随着压实温度从135℃提高到165℃时,混合料的高温稳定性呈现出先增大后减小的趋势,马歇尔稳定度在155℃时达到最大值,动稳定度在145℃时达到最大值;压实温度对NovaChip Type C的水稳定性影响不明显,随着压实温度的提高,混合料的水稳定性呈现出先增大后减少的趋势,但变化的幅度不大;NovaChip Type C的低温抗裂性随着压实温度的提高呈现出先减少后增大的趋势,-10℃的破坏弯拉应变在165℃时达到最大值;NovaChip Type C的合理压实温度范围为135~145℃.  相似文献   

14.
温拌沥青混合料施工中温度场的时空特性   总被引:2,自引:0,他引:2  
以天(水)至定(西)高速公路沥青路面表面层摊铺施工为背景,实测了热拌和温拌沥青路面摊铺过程中路面周围不同空间、不同时间的温度情况,对比了热拌与温拌沥青混合料施工时沥青路面周围温度场的时空分布特性。结果表明:在初压温度相同时,温拌沥青混合料和热拌沥青混合料表面温度场的分布特征非常相似;碾压过程中,沥青混合料内部及表面温度随时间的变化呈较为明显的二次型分布;温拌沥青混合料内部降温速率明显小于热拌沥青混合料内部降温速率。  相似文献   

15.
应用Flow3D软件对高压水流快速充型的过程进行了计算机模拟,并在相同条件下采用1000~2000帧/s照片的高速摄影方法,对着色高速水流在透明的丙烯酸玻璃为材料制成的模具薄板型腔中的充型过程进行了拍摄,二者结果一致.显示了计算机模拟方法研究流体高压充型行为的可行性.应用同样的计算机模拟方法探讨了几种情况下的浇口、溢流槽、型腔形状与位置对其充型行为的影响.其结果对高压铸造铝、镁合金工艺参数设计具有重要参考意义.  相似文献   

16.
为了减少电连接器外壳端盖压铸件的缩孔体积,在综合考虑各种因素对铸件质量影响的条件下,以缩孔体积为试验指标,基于DOE方法,利用Pro CAST软件对压射速度、充型速度、浇注温度和模具温度进行了仿真分析.结果表明,对缩孔体积影响程度从大到小依次为压射速度、浇注温度、充型速度和模具温度.当工艺参数取最优值时,缩孔体积主要分布在排溢系统和浇注系统中.当按照最佳工艺参数进行生产时,铸件内部未产生缩孔和缩松,且铸件质量符合检验技术要求.  相似文献   

17.
水压致裂技术作为一种绝对应力测量方法广泛地运用在原地应力测量领域,在其测量过程中影响岩石破裂值的流体力学影响因素主要是压裂液的注液速率、黏度和密度等,因此应开展流体力学影响因素的室内模拟试验,定量分析各因素对于原地应力测量准确度的影响。由于因素数量较多且该试验对于岩芯试块为破坏性试验,因此试验设计较为复杂且次数较多,全面试验或正交试验方案将严重影响试验实际操作和试验效果。本文在理论分析流体力学因素对于裂缝扩展和破裂压力影响基础上,提出一种基于混合水平均匀设计方法的水压致裂模拟试验优化方案,根据压裂液的注液速率、黏度和密度等影响因素及其参数值(水平数)构建均匀试验设计方案,利用DPS数据处理软件获取最优混合水平的均匀设计表,然后根据最优均匀设计表选择不同流体力学参数的典型点进行试验。最后将试验结果与部分全面试验结果进行对比分析,证明优化试验的岩石破裂值均处于全面试验测量区间内,印证了不同流体力学因素对于岩石破裂值的影响效应。本文中优化算法试验方案通过较少的试验次数简化了试验流程,试验次数仅为正交试验的四分之一,因此显著提高了水压致裂多影响因素模拟试验效率,对于后续建立不同流体力学影响因素的破裂压力修正公式与补偿模型提供了一种快速有效的试验方法,对原地应力进一步精确测算具有一定的积极意义。  相似文献   

18.
颗粒细、药效好、用量少已成为现代中药制剂的必然发展趋势。利用近年提出的超临界流体辅助雾化过程成功制备出了中药复方肝炎制剂的超细粉体,系统分析了混合器压力和温度及进液速率对微粒形态、粒径和粒径分布的影响。结果表明:利用超临界辅助雾化过程,以水和乙醇的混合溶液为溶剂,可制备出粒径范围为1.0~5.0μm的复方肝炎超细粉体,且大部分粒子形态呈完整的球形。各影响因素对粒径及粒径分布均有不同程度的影响,其中混合器压力及溶液浓度对粒径及粒径分布的影响最明显,进液速率次之,混合器温度的影响较小。在操作范围内较为理想的工艺条件为混合器压力为14 MPa,温度为60℃,进液速率为4.5 mL/min。  相似文献   

19.
为优化汽车散热风扇的注塑成形工艺,模拟分析汽车散热风扇的注塑成形过程,通过ANSYS对散热风扇进行受力载荷分析,得到风扇的应力分布图和形变分布图,利用Moldflow对风扇进行模流分析,使用DOE单变量试验法,分析注射时间对风扇质量标准的影响,生成2D响应图,再使用正交试验法分析风扇翘曲变形和体积收缩率的影响因素,得出...  相似文献   

20.
以一翻窗上扇框复杂空心铝型材为研究对象,在前期模具结构优化基础上,采用正交试验法,以挤压速度、棒料预热温度、挤压筒预热温度、模具预热温度为试验因素,分别以型材出口截面流速均方差(SDV)和温度均方差(SDT)为试验指标,借助HyperXtrude13.0软件进行优化分析,获得了SDV和SDT指标分别为最小值时的挤压工艺参数组合。此外,进一步讨论了优化挤压工艺参数下型材出口截面的流速和温度分布,结果表明A1B3C2D1挤压工艺参数组合(挤压速度3 mm/s、棒料预热温度490 ℃、挤压筒预热温度450 ℃、模具预热温度440 ℃)可以获得最均匀的型材出口速度分布(SDV仅为1.304 5)和温度分布(SDT仅为1.182 3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号