首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Metallic Ru and Hf-based dielectrics such as HfO2, HfSiOx and HfSiON, are promising materials for the gate electrode and gate dielectrics, respectively. This paper reports on the thermal stability of gate stack systems comprised of Ru/Hf-based dielectrics. Layers of both types of material were prepared on Si substrate by metal-organic chemical vapour deposition (MOCVD). The stacks underwent exposure by rapid thermal annealing (RTA) in pure nitrogen ambience at temperatures 800, 900, and 1000 °C for 10 s. The samples were analysed using Rutherford backscattering spectrometry (RBS). Small changes were found in the stacks treated at 800 and 900 °C. The most stable stack was found to be one with a HfSiON dielectric layer, which was resistant also at temperature 900 °C. However, the annealing at 1000 °C induced massive diffusion at both interfaces for all types of stack. The results imply a limited thermal stability of the Ru/Hf-based dielectric gate stacks during the source/drain activation step.  相似文献   

2.
CexAlyOz thin films were deposited on TiN metal electrode by metalorganic chemical vapour deposition method at 400 °C. The detailed physical characterization on CexAlyOz/TiN stack upon annealing at different temperatures (600 °C and 850 °C) and for different deposition methods (Atomic vapour deposition (AVD) and Physical vapour deposition (PVD)) of electrode material were done for possible Metal-Insulator-Metal applications. X-ray diffraction results exhibited that the dielectric and TiN(AVD) are amorphous while TiN(PVD) is crystalline for the as deposited stacks. Annealing on CexAlyOz/TiN(AVD) at 600 °C, initiates CeO2 crystallization in the dielectric with composition of Ce:Al = 0.5 as obtained by X-ray photoelectron spectroscopy. In CexAlyOz/TiN(PVD) stack, the dielectric remains in its amorphous state until 850 °C. However, TiO2 crystallization is formed at 600 °C in CexAlyOz/TiN(PVD). Time of flight secondary ion mass spectroscopy depth profiling data proves that the annealing at 600 °C caused the oxidation of both the metal electrodes and the inter-diffusion of Ti from the bottom metal electrode through the dielectric layer.  相似文献   

3.
High Resolution Rutherford Backscattering Spectrometry (HR-RBS) with a depth resolution of about 0.3 nm near the surface was used to analyse the interface between ultrathin high-k ZrO2-layers and the substrate. In order to improve the quality of the analysis, a method was developed that takes local thickness variations, obtained by atomic force microscopy, into account during simulation of the HR-RBS spectra. The initial stages of atomic layer deposition (ALD) growth processes on Si(100) covered with native silicon oxide (SiO2) or with TiN have been studied. In the first case the interface is sharp, except for a small intermediate ZrSiO4-layer, and no diffusion of Zr-atoms in SiO2 could be detected. A quite different behaviour could be derived from high resolution spectra for the growth of ZrO2 on TiN. In addition, measurements of the surface topography of the TiN-layer revealed non-negligible surface roughness. Diffusion of Zr into polycrystalline TiN was demonstrated after correction for surface roughness. This observation indicates that already during the first ALD reaction cycle a small proportion of the deposited Zr-atoms diffuses - probably along grain boundaries - into the TiN-layer up to a depth of 3 nm.  相似文献   

4.
Thin HfO2 films were grown as high-k dielectrics for Metal-Insulator-Metal applications by Atomic Vapor Deposition on 8 inch TiN/Si substrates using pure tetrakis(ethylmethylamido)hafnium precursor. Influence of deposition temperature (320-400 °C) and process pressure (2-10 mbar) on the structural and electrical properties of HfO2 was investigated. X-ray diffraction analysis showed that HfO2 layers, grown at 320 °C were amorphous, while at 400 °C the films crystallized in cubic phase. Electrical properties, such as capacitance density, capacitance-voltage linearity, dielectric constant, leakage current density and breakdown voltage are also affected by the deposition temperature. Finally, TiN/HfO2/TiN stacks, integrated in the Back-End-of-Line process, possess 3 times higher capacitance density compared to standard TiN/Si3N4/TiN capacitors. Good step coverage (> 90%) is achieved on structured wafers with aspect ratio of 2 when HfO2 layers are deposited at 320 °C and 4 mbar.  相似文献   

5.
Sol-gel derived Pb40Sr60TiO3 (PST) thin film has been investigated as a diffusion barrier for integrating in PbZr30Ti70O3 (PZT) device structures on Si substrates. PST film was deposited on SiO2/Si substrate and annealed at a relatively low temperature range of 550-600 °C producing a crack-free, smooth and textured surface. Following deposition on PST/SiO2/Si template PZT thin film was crystallised exhibiting random grain orientations and an insertion of the bottom Pt/Ti electrode forming PZT/Pt/Ti/PST/SiO2/Si stacks promoted the preferred PZT (111) perovskite phase. PZT (111) peak intensity gradually decreased along with slight increase of the PZT (110) peak with increasing annealing temperature of the buffer PST film. The dielectric and ferroelectric properties of the PZT with barrier PST deposited at 550 °C were assessed. The dielectric constant and loss factor were estimated as 390 and 0.034 at 100 kHz respectively and the remnant polarisation was 28 µC/cm2 at 19 V. The performance of the PZT/PST device structures was compared to similar PZT transducer stacks having widely used barrier TiO2 layer.  相似文献   

6.
Metal oxide semiconductor (MOS) capacitors with titanium oxide (TiOx) dielectric layer, deposited with different oxygen partial pressure (30, 35 and 40%) and annealed at 550, 750 and 1000 °C, were fabricated and characterized.Capacitance-voltage and current-voltage measurements were utilized to obtain, the effective dielectric constant, effective oxide thickness, leakage current density and interface quality. The obtained TiOx films present a dielectric constant varying from 40 to 170 and a leakage current density, for a gate voltage of − 1 V, as low as 1 nA/cm2 for some of the structures, acceptable for MOS fabrication, indicating that this material is a viable high dielectric constant substitute for current ultra thin dielectric layers.  相似文献   

7.
We have grown “all oxide” transparent p-n junction thin film nanostructure device by using chemical solution deposition and E-beam evaporation onto SiO2 substrate. Combined grazing incidence X-ray diffraction and atomic force microscopy confirm phase pure, mono-disperse 30 nm NiO and 2 at. wt.% Sn doped In2O3 (ITO) nanocrystallites. Better than 70% optical transparency, at a wavelength of 600 nm, is achieved across 160 nm thick p-n junction. The optical band gap across the junction was found to decrease as compared to the intrinsic ITO and NiO. The current-voltage (I-V) characteristics show rectifying nature with dynamic transfer resistance ratio of the order of 103 in the forward bias condition. Very small reverse leakage current with appreciable breakdown was observed under the reverse bias condition. The observed optical and electrical properties of oxide transparent diode are attributed to the heteroepitaxial nature and carrier diffusion at the junction interface.  相似文献   

8.
Wenli Yang 《Thin solid films》2006,515(4):1708-1713
Amorphous TiO2 thin films were formed by plasma-enhanced chemical vapor deposition (PECVD) from mixtures of titanium IV isopropoxide (Ti(O-i-C3H7)4) and oxygen. The deposition rate was found to be weakly activated, with an apparent activation energy of 4.5 kJ/mol. The deposition rate increased with equivalence ratio and decreased with plasma power. This dependence on atomic oxygen density was consistent with behavior observed in other metal oxide PECVD systems. Metal-insulator-silicon devices were fabricated, and characterized using capacitance-voltage measurements. The apparent dielectric constant of the TiO2 thin films increased from 15 to 82 with film thickness. The observed variations were consistent with the formation of an interfacial SiO2 layer. Assuming that a TiO2/SiO2 bilayer behaves as two capacitors in series, an intrinsic TiO2 dielectric constant of 82 ± 10 and an interfacial SiO2 layer thickness of 3 ± 1 nm were extracted from electrical measurements.  相似文献   

9.
Ru thin films were grown on hydrogen terminated Si, SiO2, Al2O3, HfO2, and TiO2 surfaces by atomic layer deposition from bis(2,5-dimethylpyrrolyl)ruthenium precursor and oxygen. The 4-20 nm thick films on these surfaces consisted of nanocrystalline hexagonal metallic ruthenium, regardless of the deposition temperature. At the lowest temperatures examined, 250-255 °C, the growth of the Ru films was favored on silicon, compared to the growth on Al2O3, TiO2 and HfO2. At higher temperatures the nucleation and growth of Ru became enhanced in particular on HfO2, compared to the process on silicon. At 320-325 °C, no growth occurred on Si-H and SiO2-covered silicon. Resistivity values down to 18 μΩ·cm were obtained for ca. 10 nm thick Ru films.  相似文献   

10.
In this work, we report on effects of post-deposition annealing on electrical characteristics of metal–insulator–semiconductor (MIS) structures with HfO2/SiO2 double gate dielectric stacks. Obtained results have shown the deterioration of electro-physical properties of MIS structures, e.g. higher interface traps density in the middle of silicon forbidden band (Ditmb), as well as non-uniform distribution and decrease of breakdown voltage (Ubr) values, after annealing above 400 °C. Two potential hypothesis of such behavior were proposed: the formation of interfacial layer between hafnia and silicon dioxide and the increase of crystallinity of HfO2 due to the high temperature treatment. Furthermore, the analysis of conduction mechanisms in investigated stacks revealed Poole–Frenkel (P–F) tunneling at broad range of electric field intensity.  相似文献   

11.
Barium strontium titanate Ba0.7Sr0.3TiO3 (BST) thin films, with different growth temperatures (Tg) as well as different film thicknesses, have been prepared on Pt/Ti/SiO2/Si substrates by a reactive pulsed laser deposition method. We observed strong dependences of dielectric properties, such as the Curie-Weiss temperature, dielectric constant, loss tangent, dielectric tunability and leakage current, on the Tg and the BST film thickness. With increase of Tg from 630 to 750 °C, the dielectric constant gradually increases due to the increase in the crystallinity and the grain size. However, the dielectric tunability, loss tangent and leakage current characteristics drastically degrade when the Tg increases up to 750 °C, due to the diffuse and rough interface. The BST film grown at 690 °C shows the best overall dielectric properties with a figure-of-merit of 33 (at 400 kV/cm). These results suggest that film growth process could be optimized by systematically investigating the structure-property relationships. Furthermore, as the BST film thickness increases from 250 to 560 nm, the dielectric properties are remarkably enhanced. The film thickness effect is attributed to the interfacial low-dielectric layers (the so-called “dead layer”) between the BST film and both metal electrodes, which is well explained in terms of a series capacitor model. The thickness and the average dielectric constant for the dead layer are experimentally estimated to be 1.9 nm and 20.3, respectively, in Pt/BST/Pt capacitors.  相似文献   

12.
We present the study of formation of Ge-nanoparticles (Ge-NP) in germanosilicate (Ge:SiO2) multilayer (ML) films under thermal treatment. In anticipation of controllable formation of Ge-NP, ML films were prepared by magnetron deposition at room temperature as 20 bi-layer stacks, each bi-layer comprised of a 7 nm thick layer of (Ge + SiO2) (molar ratio: 60:40) succeeded by a 7 nm thick layer of pure SiO2, and then annealed for 1 h, up to Ta = 900 °C. Formation and morphology of Ge-NP were analyzed by combining the information obtained from the grazing incidence small angle X-ray scattering and X-ray diffraction. It was found that precipitation of Ge-NP starts at Ta = 600 °C, while high degree of in-plane confinement and lateral ordering of rather uniform precipitated particles is achieved at Ta =  700-800 °C range. At still higher annealing temperature Ta > 800 °C, volume fraction of precipitated Ge-NP in SiO2 matrix diminishes due to the out-diffusion of Ge atoms from the film, while Ge-NP are no more well confined to (Ge + SiO2) layers.  相似文献   

13.
In this paper we have described the use of secondary-ion mass spectrometry (SIMS), solid state 29Si magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) to detect the existence of amorphous silica in Ti3SiC2 oxidised at 500–1000 °C. The formation of amorphous SiO2 and growth of crystalline TiO2 with temperature was monitored using dynamic SIMS and synchrotron radiation diffraction. A duplex structure with an outer TiO2-rich layer and an inner mixed layer of SiO2 and TiO2 was observed. Results of NMR and TEM verified for the first time the direct evidence of amorphous silica formation during the oxidation of Ti3SiC2 at the temperature range 500–1000 °C.  相似文献   

14.
J.P. Xu  P.T. Lai  C.X. Li 《Thin solid films》2009,517(9):2892-2895
Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N2, NH3, NO and N2O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeOx interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N2 anneal, the wet NH3, NO and N2O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeOxNy interlayer. Among the eight anneals, the wet N2 anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 × 1011 eV− 1 cm− 2 and gate leakage current of 2.7 × 10− 4 A/cm2 at Vg = 1 V.  相似文献   

15.
Epitaxial anatase titanium dioxide (TiO2) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10− 7 Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO2 growth. X-ray diffraction revealed that the TiO2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates.  相似文献   

16.
H. Akazawa  M. Shimada 《Vacuum》2006,80(7):704-707
We investigated the orientation of domains in LiNbO3 (LN) thin films grown by electron-cyclotron resonance plasma sputtering on TiN films with various crystalline states. Deposition at 400 °C on an amorphous TiN produced partially crystallized and apparently c-axis-oriented LN. When TiN crystallized at 460 °C to become polycrystalline grains, the roughened surface randomized the orientation of LN. At 600 °C, the reaction of TiN with oxygen atoms supplied from the plasma created a TiOx layer. Rapid thermal annealing of amorphous LN films at 460 °C was the best solution for removing these disorientation factors, but annealing of amorphous LN on poly-crystalline TiN yielded no c-axis-oriented domains.  相似文献   

17.
We investigated the influence of the Ti out-diffusion in Pt/TiOx/SiO2/Si substrates (0 ≤ x ≤ 2), having different thicknesses of Pt and TiOx layers, on the crystalline growth of (Ba,Sr)TiO3 (BST) deposited by pulsed laser deposition. By means of X-ray diffraction and transmission electron microscopy, we show that the orientation of BST clearly depends on the presence and quantity of Ti having migrated up to the Pt surface, and on its possible oxidation prior to BST deposition, which was controlled by the atmosphere (vacuum or oxygen) of the pre-heating stage of the BST deposition process. Whereas BST has no preferential orientation if grown on a bare Pt surface, a strong (111) orientation of BST is obtained for a limited diffusion of titanium oxides on the Pt surface just before BST deposition. However, the (111) orientation is lost if this seeding titanium oxide layer on Pt is too thick just before BST deposition. Also, the formation of protrusions was evidenced at the BST/Pt interface and associated with the oxidation of Ti within the Pt layer.  相似文献   

18.
The Staphylococcus epidermidis biofilm formation on titanium or titanium alloy, coated with TiN, SiO2-TiO2 and electrodeposited hydroxyapatite, was tested. Surfaces of titanium, Ti6Al4V alloy or TiN, modified with SiO2-TiO2 layer, were found to be highly resistant to bacterial adhesion. Only small amounts of bacterial cells were observed on matrices coated by thin hydroxyapatite films, deposited on both SiO2-TiO2 and TiN + SiO2-TiO2 interlayers. Biological tests showed that the biofilm formed massively on polished and ground titanium and titanium alloy surfaces, also those covered with TiN, but not on those modified with SiO2-TiO2 nanofilm.  相似文献   

19.
The 4H-SiC Pt recessed gate metal-semiconductor field-effect transistor (MESFET) was fabricated by reactive ion etching (RIE) for device isolation. The device exhibited a pinch-off voltage of − 9 V, transconductance (gm) of 19.2 mS/mm, and gate breakdown voltage of − 115 V at room temperature. The characteristics of this MESFET were investigated at high temperatures. It was shown that the MESFET can operate at 560 °C. The time dependence of the IDS of a MESFET was also investigated at 400 °C in an Ar atmosphere. The change of IDS (VG = 0 V) was less than 5%, for the duration of 200 h.  相似文献   

20.
Polycrystalline p-type CuxO films were deposited after the growth of HfO2 dielectric on Si substrate by pulsed laser deposition, and CuxO metal-oxide-semiconductor (MOS) capacitors with HfO2/SiO2 stack gate dielectric were primarily fabricated and investigated. X-ray diffraction and X-ray photoelectron spectroscopy were applied to analyze crystalline structure and Cu+/Cu2+ ratios of CuxO films respectively. SiO2 interlayer formed between the high-κ dielectric and substrate was estimated by the transmission electron microscope. Results of electrical characteristic measurement indicate that the permittivity of HfO2 is about 22, and the gate leakage current density of MOS capacitor with 11.3 nm HfO2/SiO2 stack dielectrics is ∼ 104 A/cm2. Results also show that the annealing in N2 can improve the quality of CuxO/HfO2 interface and thus reduce the gate leakage density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号