共查询到17条相似文献,搜索用时 62 毫秒
1.
为有效提高滚动轴承故障诊断准确率,提出了基于自适应噪声集合经验模态分解(CEEMDAN)气泡熵(BE)和支持向量机(SVM)相结合的轴承故障诊断方法。首先经CEEMDAN分解得到一系列本征模态函数(IMF)分量,然后筛选重要IMF分量计算其气泡熵值,构建故障特征向量并输入到经算术优化算法(AOA)优化的SVM模型中进行训练和轴承故障分类。结果表明该方法识别准确率高达992%,相比GA SVM准确率提升了28%,也能成功识别出滚动轴承单一故障与复合故障,可以用于轴承故障分类。 相似文献
2.
电动机轴承的振动信号具有不平稳、非线性和高噪声等特点.在轴承故障的情况下,通过原始信号或部分时域特征参数不易准确判断故障位置.为解决此问题,在考虑时域特征的基础上,进一步通过集成经验模态分解(EEMD)和模糊熵进行特征参数提取.将轴承在正常、内滚道故障、滚动体故障以及外滚道的三个方向故障状态下的振动信号通过集成经验模态... 相似文献
3.
针对滚动轴承故障振动信号的非平稳特性和难以获得大量实际故障样本的情况,提出了一种基于经验模式(EMD)分解的新型故障特征撮方法,并与支持向量机(SVM)相结合实现滚动轴承的故障诊断.该方法首先将振动信号进行小波包降噪,再对去噪信号进行EMD分解,求解分解后各单元的瞬时能量变化,取瞬时能量变化的熵值组成特征向量,最后将其作为支持向量机的输入实现滚动轴承故障分类.经过实验验证,该方法能够有效的识别轴承正常状态、内圈故障、外圈故障以及滚珠故障. 相似文献
5.
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。 相似文献
6.
基于EMD近似熵和SVM的电力线路故障类型识别 总被引:5,自引:0,他引:5
提出了一种基于经验模式分解(EMD)的近似熵和支持向量机(SVM)的电力故障类型识别的新方法.利用EMD良好的局域化特性和近似熵来量化故障特征.再与SVM结合进行故障类型识别.首先,对故障线路的三相电压信号进行EMD分解得到若干个能反映故障信息的本征模式分量(IMF);其次,选取三相电压的前4个IMF的近似熵值作为信号的特征向量.最后将构造的特征向量输入到SVM分类器进行故障类型识别.仿真表明,该方法能有效地提取故障特征,不同的故障类型,其三相近似熵变化明显不同,同一种故障类型,在不同故障位置、过渡电阻和初始相角情况下,其三相近似熵变化规律相似;与传统的BP网络相比,SVM网络具有训练样本少、训练时间短、识别率高的特点. 相似文献
7.
一种基于经验模式分解与支持向量机的转子故障诊断方法 总被引:13,自引:2,他引:13
转子系统故障诊断的关键是故障特征提取和状态识别,在故障特征提取中,采用自回归(AR)模型参数作为特征向量来分析系统的状态变化是十分有效的,但AR模型只适用于平稳信号的分析,而转子系统的振动信号表现出非平稳特征;同时在状态识别中,支持向量机(SVM)有效地改善了传统分类方法的缺陷。针对这些问题,提出一种基于经验模态分解(empiricalmodedecomposition,EMD)和支持向量机的转子系统故障诊断方法。该方法对转子系统的振动信号进行经验模态分解,将其分解为若干个固有模态函数(intrinsicmodefunction,IMF);对每一个IMF分量建立AR模型,取模型的自回归参数和残差的方差作为故障特征向量,并以此作为输入来建立支持向量机分类器,判断转子系统的工作状态和故障类型。实验结果分析表明,文中提出的方法能有效地应用于转子系统的故障诊断。 相似文献
8.
《高压电器》2015,(11):187-193
利用振动法在线监测配电变压器绕组的状态关键在于如何从振动信号中提取有效的特征。为了更有效地监测与诊断变压器绕组的状态,搭建了某配电变压器多次短路冲击试验及负载试验时的振动信号监测平台,利用总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)对变压器绕组的振动信号进行分析并求解其能量熵值,提出一种基于EEMD能量熵的配电变压器绕组状态监测与故障诊断的方法。实验结果表明,EEMD能够有效地提取配电变压器绕组振动信号的特征,得到振动信号各频带内的能量分布状态,可准确地在线监测与诊断配电变压器绕组故障。 相似文献
9.
基于EEMD,SVM和ARMA组合模型的电价预测 总被引:1,自引:0,他引:1
随着我国电力体制改革的不断深入,售电公司作为电力市场的主要参与者,其主要获利方式是从电力市场中购买电量并销售给用户。因此准确预测现货市场电价变化趋势,是售电公司降低购售电风险的重要保障。为此,根据现货市场中电价的特性,提出基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)、支持向量机(support vector machine,SVM)和自回归移动平均模型(autoregressive moving average,ARMA)的组合预测模型。首先利用EEMD将历史数据分解成一系列相对比较平稳的分量序列;其次,利用遗传算法(genetic algorithm,GA)优化的SVM预测高频分量,利用自回归移动平均模型预测低频分量;最后将各子序列的预测结果求和作为最终预测结果。用美国售电公司真实数据进行预测,并与其他模型进行比较。算例结果表明所提模型的预测精度更高。 相似文献
10.
针对矿用异步电机故障时定子电流信号非线性非平稳性的特点,提出了一种基于集合经验模态分解(EEMD)能量熵与人工神经网络(ANN)结合的转子故障诊断方法。首先利用EEMD将电机定子电流信号分解为一系列本征模态函数(IMF);其次通过互相关准则,选取信息最丰富的IMF分量并计算其能量熵来构造故障特征向量;最后将特征向量输入人工神经网络(ANN)进行训练和状态识别。实验通过Ansys Maxwell软件对故障电机建模获得仿真电流数据,验证了该方法是一种可行的矿用电机故障诊断方法,相较于传统频谱分析更为可靠,可实现对异步电机处于正常、转子断条、气隙偏心等状态的准确识别,综合识别率达97%。 相似文献
11.
针对风机轴承振动信号故障特征提取困难的问题,提出了一种基于多尺度模糊熵(MFE)特征提取,并结合乌燕鸥优化算法(STOA)优化支持向量机(SVM)的风机轴承故障诊断方法。首先采集原始振动信号并计算其多层次模糊熵,其次构造故障特征向量集合作为SVM的输入,最后采用STOA优化SVM对轴承故障进行分类诊断。通过凯斯西储大学轴承振动数据进行仿真,结果显示轴承故障诊断准确率达到了99.3〖WTB4〗%〖WTBZ〗,证明了所提方法具有较高的准确度和有效性。 相似文献
12.
13.
针对三电平逆变器交叉两桥臂的两只功率管同时开路故障(非典型故障)诊断问题,提出一种基于相空间重构和支持向量机(SVM)的故障诊断方法。该方法以三相电流为检测信号,为降低特征向量的维数,对三相电流进行了Park变换,然后采用相空间重构技术,对d、q轴电流分别进行重构,得到不同形状、大小和方向的电流轨迹图形,借助图像处理技术从中提取出故障特征向量,将其作为学习样本,在SVM中训练,使分类器能够建立不同特征向量和故障类型的映射关系,实现对二极管中点箝位型(NPC)三电平逆变器的故障诊断。仿真结果表明,该方法能够准确地定位故障元,诊断精度高。 相似文献
14.
针对传统平均经验模态分解(EEMD)中添加白噪声参数需依据人工经验设定的缺陷,在研究引起模态混叠原因的基础上提出一种自适应EEMD方法。该方法可以根据信号本身特性,自适应设定白噪声标准差以达到最优分解效果。首先使用奇异值差分谱法对信号进行分解、重构,然后利用提取得到的高频冲击分量和噪声分量的复合分量对所需添加白噪声标准差大小进行自适应整定,最后通过自适应EEMD将信号分解为一系列本征模态函数(IMF)。分形维数对信号特征评价性能良好,所以用分形维数来识别不同类型振动信号是十分有效的。本文提出分层分形维数方法,可提高信号识别、分类效率和准确度。使用该复合方法处理仿真信号、风电机组传动系统实验平台信号均取得良好效果,证明了本文所提方法的有效性。 相似文献
15.
为了准确有效地识别变压器内部的潜伏性机械故障,提出了一种基于时变滤波经验模态分解(TVFEMD)和麻雀搜索算法优化最小二乘支持向量机(SSA-LSSVM)的变压器内部机械故障诊断方法。首先,对铁心处于不同松动状态的变压器进行振动信号采集;其次,利用时变滤波改进的经验模态分解(EMD)对所得振动信号进行分解,以获取多个本征模态函数(IMF)即模态分量;然后,采用相关系数法计算IMF分量与原始振动信号的相关性,并计算相关性最大的IMF分量的样本熵,以此构建特征向量集;最后,以诊断准确率最高为目标函数,利用SSA对LSSVM的正则化参数和核函数参数进行优化,搭建SSA-LSSVM诊断模型,并利用诊断模型对特征向量集进行诊断识别,实现变压器铁心内部潜伏性机械故障的诊断。试验结果表明,所提方法能够有效识别变压器内部潜伏性机械故障,识别准确率达到了98%以上,比对比算法的识别准确率高出5%以上,达到了高识别准确率的诊断效果。 相似文献
16.
鲸鱼优化支持向量机的短期风电功率预测 总被引:2,自引:0,他引:2
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型。该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode decomposition)将原始风电序列分解为一系列不同特征尺度的子序列;并引入鲸鱼优化算法WOA(whales optimization algorithm)解决SVM中学习参数选择难的问题,进而对各子序列建立WOASVM预测模型;最后,叠加各子序列的预测值以得到最终预测值。仿真表明,所提EEMDWOASVM模型具有较高的风电预测精度,显著优于其他基本模型。 相似文献
17.
为了对非平稳、非线性系统时间序列进行建模,提出一种基于经验模式分解的神经网络预测模型,研究它的有效性。通过太阳黑子数据的仿真试验,验证该神经网络结构比对应的单一神经网络结构性能优越。根据该方法组成一个多分量神经网络模型库,用于转子故障的模型诊断,这些模型可以用做一步向前预测器,对检测和诊断信号进行比较,从预测误差提取特征,能够确定机器的状态。不同故障状态的转子振动信号用来训练和检验模型。实验数据表明,这种方法用于故障诊断具有一定的工程实用性。 相似文献