首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Optical model gain in both the TE and TM polarizations of graded-index separate-confinement single-quantum-well heterostructure lasers measured at various levels of injection current on samples with different quantum-well widths is discussed. Lasers with wide quantum wells (⩾120 Å) have emission and gain spectra which exhibit two peaks, caused by the n=1 and n=2 subband transitions. With ordinary cavity parameters, the saturation gain of the n=1 subband transitions is lower than the cavity loss of the laser, and the lasers always lase at the n=2 transitions. Reducing the quantum-well width increases the saturation gain of the n=1 transitions enough to allow lasing from them, even in cases of higher cavity loss. Further, for a fixed cavity loss, reduction of the quantum-well width decreases the threshold current density for n =1 lasing transitions, while that for n=2 lasing increases. The superlinear increase of the material gain with the decrease of the well width reduces the minimum cavity length for n =1 subband lasing. Narrower quantum wells with higher mirror reflectivity allow shorter cavity lengths while retaining n=1 lasing, resulting in low threshold current  相似文献   

2.
The electronic band structures, density-of-states, and optical gain spectra for wurtzite GaN-AlxGa1-xN quantum wells are studied theoretically based on the Hamiltonian derived using the k.p method. We investigate the dependence of the optical gain and transparent current density on the well width, barrier height, and strain using a numerical approach with high accuracy. The mole fraction of Al in the barrier material is progressively increased to study the effects of quantum confinement and compressive strain. A higher Al mole fraction in the barrier leads to improvement of the TE optical gain and suppression of the TM optical gain. Furthermore, we demonstrate that a reduction of the well width offers improved modal gain over all radiative current densities. We also predict a transparent current density of 250 A/cm2 for the GaN-AlxGa1-x N single quantum-well (QW) structure. Our results suggest that a suitable combination of thin well width and large barrier height should be selected in improving the TE optical gain in wurtzite GaN-Alx Ga1-xN single QW  相似文献   

3.
Gain and intervalence band absorption in quantum-well lasers   总被引:4,自引:0,他引:4  
The linear gain and the intervalence band absorption are analyzed for quantum-well lasers. First, we analyze the electronic dipole moment in quantum-well structures. The dipole moment for the TE mode in quantum-well structures is found to be about 1.5 times larger at the subband edges than that of conventional double heterostructures. Also obtained is the difference of the dipole moment between TE and TM modes, which results in the gain difference between these modes. Then we derive the linear gain taking into account the intraband relaxation. As an example, we applied this analysis to GaInAs/InP quantum-well lasers. It is shown that the effects of the intraband relaxation are 1) shift of the gain peak toward shorter wavelength with increasing injected carrier density even in quantum-well structures, 2) increase of the gain-spectrum width due to the softening of the profile, and 3) reduction in the maximum gain by 30-40 percent. The intervalence band absorption analyzed for quantum-well lasers is nearly in the same order as that for conventional structures. However, its effect on the threshold is smaller because the gain is larger for quantum wells than conventional ones. The characteristic temperature T0of the threshold current of GaInAs/InP multiquantum-well lasers is calculated to be about 90 K at 300 K for well width and well number of 100 Å and 10, respectively.  相似文献   

4.
Tanaka  H. 《Electronics letters》1993,29(18):1611-1613
Tensile-strained active layer GaAs/AlGaAs separate-confinement-heterostructure quantum-well lasers are reported. These lasers oscillate in the 780 nm band in the TM mode by TM mode gain enhancement in the tensile-strained active layer. The threshold current density of single-quantum-well laser diodes increases rapidly with heatsink temperature. However, triple-quantum-well laser diodes with a cavity length of 485-110 mu m oscillated with a threshold current density of 1.4 and 3.0 kA/cm/sup 2/.<>  相似文献   

5.
Numerical techniques are developed to study the output spectra and to solve the multimode coupled rate equations including transverse electric (TE) and transverse magnetic (TM) propagations for Inx Ga1-xAs-Al0.3Ga0.7As and In0.53+xGa0.47-xAs-Al0.48In0.52 quantum-well lasers. Optical properties are calculated from a 4×4 k×p band structure, and strain effects are included with the deformation potential theory. It is found that an introduction of 1.4% compressive strain to the quantum well results in roughly 3-4 times improvement in the intrinsic static characteristics in terms of lower threshold current, greater mode suppression and lower nonlasing photon population in the laser cavity. The authors identify the effect of strain on the large signal temporal response. They also include calculated CHSH Auger rates in their model  相似文献   

6.
The gain saturation coefficients were measured for strained and unstrained multiple quantum-well distributed feedback (MQW-DFB) lasers. The gain saturation coefficient depends on the deviation of the laser's transverse-magnetic (TM) mode gain peak wavelength from its transverse-electric (TE) mode gain peak wavelength delta lambda , which is related to the strain on the active-layer wells. The gain saturation coefficient epsilon increased with increasing compressed strain on the active-layer wells. The coefficient epsilon of the unstrained MQW DFB laser with a wavelength deviation delta lambda of -350 AA was 2.45*10/sup -17/ cm/sup 3/, and epsilon increased up to 12.6*10/sup -17/ cm/sup 3/ in the SL-MQW DFB laser with a wavelength difference delta lambda of -890 AA.<>  相似文献   

7.
A theoretical model of a cubic GaN quantum-well laser is studied taking into account the effects of strong spin-orbit (SO) split-off band coupling on the valence-band structure and the optical gain within the 6/spl times/6 Luttinger-Kohn model. It is expected that a very narrow separation (10 meV) between the SO band and the heavy- and light-hole bands causes two undesirable effects on the lasing of GaN quantum well: (1) the TE and the TM polarizations have comparable magnitudes over the wide range of carrier densities and (2) the SO band will be easily occupied by the injected holes which in turn reduces the injection efficiency or increases the lasing threshold. A combination of strain and the use of alloy is proposed to reduce the hole and the electron masses and to increase the SO band separation in order to reduce the lasing threshold.  相似文献   

8.
A double-heterostructure (DH) laser with TM mode lasing has been achieved with a narrow active-layer width, and a laser-diode optical switch (LDSW) module with less than a 0.35-dB gain difference between the TE and TM modes over a wide wavelength range has been constructed by introducing a square bulk active layer formed by dry etching and regrowth. The polarization-insensitive width of a 0.3-μm-thick DH laser is clarified to be between 0.30 and 0.35 μm, since the 0.30- and 0.35-μm-wide DH lasers lase in the TM mode and TE mode, respectively. The polarization-insensitive width of the fabricated 0.3-μm-thick LDSW is estimated to be about 0.32 μm for the fabricated LDSW with a trapezoidal active layer by measuring the single-pass gain and the gain difference between the TE and TM modes. This must be to within 0.01 μm. A 0.35-μm-wide, 300-μm-long LDSW module has lossless gain in the wavelength range of 1.31 to 1.36 μm at 20 mA. The gain difference between the TE and TM modes is as low as 0.35 dB, The rise and fall times are 1.0 and 0.55 ns, respectively. The bulk active-layer LDSW module is promising for use as a polarization-insensitive optical-gate switch in optical information systems  相似文献   

9.
Nano-scale optical circuits with core thickness of ~ 230 nm and core width of ~ 1 mum were fabricated and evaluated, using the photo-induced refractive index variation sol-gel materials, whose refractive index gradually increases by UV light exposure and baking. Propagation loss of linear waveguides was 1.86 dB/cm for TE mode and 1.89 dB/cm for TM mode at 633 nm in wavelength, indicating that there were small polarization dependences of ~ 0.03 dB/cm. Spot sizes of guided beams along core width direction and along core thickness direction were, respectively, 0.6 and 0.3 mu m for both TE mode and TM mode. Bending loss of S-bending waveguides was reduced from 0.44 to 0.24 dB for TE mode with increasing the bending curvature radius from 5 to 60 mu m. Although the bending loss for TM mode was slightly higher than that for TE mode, the difference was less than 10%. Branching loss of Y-branching waveguides was reduced from 1.33 to 0.08 dB for TE mode, and from 1.34 to 0.12 dB for TM mode with decreasing the branching angle from 80deg to 20deg. From these results, it is concluded that the photo-induced refractive index variation sol-gel materials can realize miniaturized optical circuits with sizes of several tens of microns and guided beam confinement within a cross section area less than 1.0 mum2 with small polarization dependences, indicating potential applications to intra-chip optical interconnects.  相似文献   

10.
The impact of well coupling on the emission spectra of multiquantum-well structures is discussed. Luminescence experiments are performed in the temperature range between 1.5 K and room temperature and at various excitation densities. High-excitation room temperature results are used for the calculation of gain profiles. With increasing coupling strength a transition from two-dimensional to three-dimensional behavior of the charge carriers is observed. In particular the two-dimensional gap is lowered, the light-hole-heavy-hole splitting is reduced, the influence of interface roughness on the line shapes is reduced, excitons cease to dominate the room-temperature luminescence, and the low-temperature recombination process switches from a non-k -conserving to a k-conserving one. Some of the fundamental advantages of quantum-well lasers, such as the improved TE/TM mode selection, the small spontaneous-to-stimulated emission ratio, and the tendency towards single-longitudinal-mode operation, are gradually lost. A detailed theory of electronic states in superlattices and of superlattice emission line shapes quantitatively explains these results  相似文献   

11.
The authors have calculated the optimal index of refraction and thickness of an antireflection coating layer for optical modes (TE/TM) in semiconductor laser devices. They have taken into account various correction factors concerning the two-dimensional carrier gas, i.e. the change in photonic energy depending on the width of the quantum well, the resulting change in refractive indexes, and the change in effective masses of the carriers. The value √neff*-n eff* is the effective optical mode index. It is compared to the exact calculated value for the optimal coating index  相似文献   

12.
Buried optical waveguide polarizers on LiNbO3 have been realized by titanium indiffusion, followed by proton-exchange and annealing. The proton-exchange process decreases the ordinary refractive index and so modifies the index profile of the titanium indiffused waveguide. The measured intensity profile is in good agreement with calculation. An aluminum film absorbs the surface TM mode on z-cut LiNbO3, leaving a buried nearly symmetric TE mode with lower optical loss than surface-guided TE modes. The extinction ratio obtained is estimated to be greater than 50 dB/cm at 0.633 μm  相似文献   

13.
The lasing mode behavior of a multiple quantum well (MQW) distributed feedback (DFB) laser was measured when intensity-modulated orthogonally polarized transverse magnetic (TM) mode light was injected. The 3-dB bandwidth of the frequency response shows a trend different from that observed with conventional bias current modulation: at high bias currents, it decreases with increasing bias current. The maximum bandwidth of 3 dB was observed when the normalized bias current was 4, and it reached 16 GHz at this bias current. The gain saturation coefficients for the transverse electric (TE) and TM modes estimated from these results were ∈pE; 2.5×10-17 cm3 and ∈qE 5.7×10-18 cm3 for the TE mode, and ∈pM: 6.0×10-17 cm3 and ∈qM: 2.0×10-14 cm3 for the TM mode  相似文献   

14.
A finite element analysis, based on the variational procedure, is used to find the modal loss or gain for both the TE and TM modes with the application of the perturbation technique. Results for the modal gain for the buried heterostructure diode laser are presented, as well as the loss estimation for both the TE and TM modes for the asymmetrical multilayer metal-clad planar optical waveguides. The results obtained agree very well, for a wide range of loss/gain values, with the previously published work using alternative approaches  相似文献   

15.
Wang  W. Allaart  K. Lenstra  D. 《Electronics letters》2004,40(25):1602-1603
It is shown that different TE/TM mode confinement factors in a bulk semiconductor optical amplifier could not be the main reason for the gain anisotropy. Instead, the intrinsic material gain difference for TE/TM polarised light can well account for this anisotropy and its dependence on pump current.  相似文献   

16.
In phase-shift distributed feedback (DFB) lasers, there is limited suppression of the TM mode despite extremely large submode suppressibility. The TE/TM mode selectivity of a DFB laser structure with a nonuniform waveguide region as the phase shifter is analyzed. Calculations of the threshold gain difference between the TE and TM modes are performed using the effective index method and the coupled-wave theory. It is found that the TM mode suppressibility can be doubled by optimizing the dimensions of the phase-shift region. This structure overcomes the TM mode problem.<>  相似文献   

17.
A theoretical and experimental study of a particular transverse-electric (TE) mode lasing mechanism of a tunneling injection InP quantum-dot (QD) laser is reported. In the experiment, the TE mode lasing action takes place at the first excited state of InP biaxially compressively strained QDs. This QD state is coupled to the ground state of two tensile-strained InGaP quantum wells (QWs) although the tensile-strained QW structure favors the transverse-magnetic (TM) polarization light emission. The measured TE and TM modal gain spectra show a typical QW gain evolution behavior at low injection currents, which can be theoretically modeled by the quasi-equilibrium of carrier distribution. When the injection current is increased near threshold, a TE gain narrowing and a simultaneous TM gain pinning are observed in the measured modal gain spectra, which cannot be explained via the quasi-equilibrium model. We propose a polarization-dependent photon-mediated carrier redistribution in the QD-coupled-QW structure to explain this TE and TM gain evolution behavior. When the injection current is just below threshold, the strong carrier depletion via stimulated emission due to coupling between the InP QD and InGaP QW states plays an important role in carrier redistribution, which depends on the optical transition energy and polarization. This concept of the polarization-dependent photon-mediated carrier redistribution explains the TE gain narrowing and TM gain pinning behavior. In addition, a coupled rate equation model is established, and the calculated polarization power ratio based on the coupled rate equations explains the experimental observation.  相似文献   

18.
The effect of high temperature on the threshold gain and threshold current density of an In0.15Ga0.85As strained quantum-well laser is examined both theoretically and experimentally. It is found that the nonlinearity of the gain-versus-current relationship increases with temperature. The implications of this result on laser cavity design for optimal high-temperature performance are discussed. The effect of high temperature on modulation bandwidth is also considered. While the numerical results are specific to an In0.15 Ga0.85As strained quantum-well laser, qualitatively they apply to all quantum-well lasers  相似文献   

19.
The operations of a complete set of optical AND, NAND, OR, and NOR gates and clocked opticalS-R, D, J-K,andTflip-flops are demonstrated, based on direct polarization switching and polarization bistability, which we have recently observed in InGaAsP/InP semiconductor lasers. By operating the laser in the direct-polarization-switchable mode, the output of the laser can be directly switched between the TM00and TE00modes with high extinction ratios by changing the injection-current level, and optical logic gates are constructed with two optoelectronic switches or photodetectors. In the polarization-bistable mode, the laser exhibits controllable hysteresis loops in the polarization-resolved power versus current characteristics. When the laser is biased in the middle of hysteresis loop, the light output can be switched between the two polarization states by injection of short electrical or optical pulses, and clocked optical flip-flops are constructed with a few optoelectronic switches and/or photodetectors. The 1 and 0 states of these devices are defined through polarization changes of the laser and direct complement functions are obtainable from the TE and TM output signals from the same laser. Switching of the polarization-bistable lasers with fast-rising current pulses has an instrument-limited mode-switching time on the order of 1 ns. With fast optoelectronic switches and/or fast photodetectors, the overall switching speed of the logic gates and flip-flops is limited by the polarization-bistable laser to < 1 ns. We have demonstrated the operations of these devices using optical signals generated by semiconductor lasers. The proposed schemes of our devices are compatible with monolithic integration based on current fabrication technology and are applicable to other types of bistable semiconductor lasers.  相似文献   

20.
Polarization sensitivity of semiconductor optical amplifiers (SOAs) with delta-strained quantum-well (QW) structures is investigated. The valence band structures and TE, TM optical gain spectra are calculated for the various delta-strained QW structures. It is shown that the number and location of the delta layers affect the polarization dependence of the delta-strained quantum well SOA signal gains. The optimal delta-strained QW structure for the SOA application is identified and its theoretical verification is provided  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号