共查询到20条相似文献,搜索用时 0 毫秒
1.
由水解法在发光粉Sr4Al14025:Eu2 ,Dy3 表面原位制备了光催化剂BiOCl,得到了新型蓄能光催化材料BiOCl/Sr4Al14025:Eu2 ,Dy3 .这种蓄能光催化材料能够储存外界光能,并缓慢释放为光催化反应提供能源,实现了无外光照射下的催化降解功能.这种材料具有稳定、可重复利用的优点,有潜在的实际应用价值.蓄能光催化材料打破了光催化反应只能在外光源照射下进行反应、关闭外光源即停止反应的限制,为光催化反应不受光源限制从而长期进行光催化反应提供了一种思路和实用材料. 相似文献
2.
用水热法合成Eu3+离子掺杂的NaGdF4晶体,考察不同反应物浓度、不同合成温度对NaGdF4晶体的微观结构、形貌和发光强度的影响。Eu3+离子5D0→7F2跃迁强度与产物中GdF3的含量密切相关,降低GdF3的含量能够显著提高Eu3+离子5D0→7F2跃迁的强度。 相似文献
3.
首先利用共沉淀法制备了发光材料前驱体,然后以石墨为还原剂、1280℃保温2 h烧结合成Sr4Al14O25Eu2+,Dy3+长余辉发光材料.通过XRD、荧光光谱分析方法,研究了助熔剂、稀土离子、烧结制度等对发光材料物相结构和发光性能的影响.结果表明发光粉体的主晶相为Sr4Al14O25,属斜方晶系,晶胞参数为a=2.480 nm,b=0.850nm,c=0.489nm;其激发光谱为一主峰波长在398 nm和356 nm的连续谱,包括紫外线和可见光;发射光谱为一主峰波长为491 nm的宽带谱,经自然光、紫外光照射后可发出明亮的蓝绿色光. 相似文献
4.
采用高温固相法制备了Sr0.96Al2O4:Eu0.02,Dy0.02,B0.08长余辉发光材料。研究了两步退火工艺中第二次退火温度对其晶体结构、激发光谱、发光光谱、余辉衰减特性、拉曼光谱和热释光光谱的影响。结果表明,随着第二次退火温度的升高,Dy Sr˙陷阱中的电子浓度逐渐增加,发光动力学级次逐渐增大,这有利于提高长余辉特性;样品的拉曼光谱峰值随退火温度的变化与V O˙˙浓度随退火温度的变化一致,这一点验证了长余辉发光材料的电子陷阱模型的有效性。在余辉测试时间内,第二次退火为1400℃×6 h的样品具有最大的余辉亮度,这源于它具有最大的Dy Sr˙陷阱中的电子浓度以及适中的时间衰减常数。 相似文献
5.
采用化学共沉淀法一次煅烧工艺制备BaAl2Si2O8:Eu2+荧光粉。用X射线衍射仪、荧光分光光度计和扫描电镜等对BaAl2Si2O8:Eu2+荧光粉的相结构、发光性能、形貌进行表征。结果表明,化学共沉淀法合成了单相的BaAl2Si2O8:Eu2+,且粒度小,分布均匀,呈类球形。在320nm激发下,其发射主峰位于465nm附近,当Eu2+的掺杂浓度为3.5%,发光强度达到最大值,猝灭浓度有所提高,这主要是由于纳米微粒边界对能量共振传递的阻断和猝灭中心在纳米晶内分布的涨落性引起的。 相似文献
6.
采用溶胶-凝胶法在Si衬底上制备Al2O3:Eu3+薄膜;并采用DTA-TG、XRD、SEM、AFM及光致发光光谱对其进行一系列表征,分析Al2O3:Eu3+薄膜的发光机制,探讨热处理温度和Eu3+掺杂浓度对发光性能的影响规律。结果表明,采用溶胶-凝胶法制备工艺,得到发光强度高的Al2O3:Eu3+薄膜,薄膜的最佳激发波长为265nm,Eu3+的最佳掺杂浓度为10mol%,在265nm光激发下,最强的发射峰出现在617nm附近;采用溶胶-凝胶法制备得到Al2O3:Eu3+薄膜表面致密、平整且无裂纹产生,表面粗糙度约为1.4nm,有利于硅基光电子器件的制备和应用。 相似文献
7.
采用水热法合成多种形貌和尺寸的NaYF4:Yb3+,Er3+上转换发光材料,探讨螯合剂、敏化剂、激活剂、氟化铵用量及水热时间对目标产物发光性能的影响规律,并通过正交实验优化Yb3+、Er3+共掺杂NaYF4上转换发光纳米材料的合成条件。采用XRD、SEM和荧光光谱对目标产物进行对比分析。结果表明:目标产物为β-NaYF4,在980 nm红外光的激发下,发出明亮的绿光,最强发射峰在542 nm。可通过改变螯合剂的种类来控制生成不同尺寸(纳米级或微米级)和形貌(管状、球形或六棱柱形)的目标产物。所制备的NaYF4:Yb3+/Er3+上转换发光材料分散性好、荧光强度高,在生物探针及生物成像等领域具有潜在的应用价值。 相似文献
8.
采用水热法合成Eu3+掺杂的RE2Sn2O7(RE=La,Gd,Y)系列样品,并采用XRD、SEM、FT-IR和荧光光谱对合成产物的晶体结构、颗粒尺寸、形貌和光学性能进行研究。结果表明:水热合成产物为单一相烧绿石结构的RE2Sn2O7:Eu3+(RE=La,Gd,Y),产物具有由一次纳米颗粒团聚而成的不规则球状形貌。激发光谱和发射光谱测试结果表明:Eu3+掺杂RE2Sn2O7(RE=La,Gd,Y)样品可以被紫外光有效地激发,发射出Eu3+离子特征的橙红色光。与其他样品相比,Gd2Sn2O7:Eu3+样品具有最强的橙红色发光,并对其原因进行了分析。 相似文献
9.
以尿素为沉淀剂,采用水热方法制备Gd2O3:Dy3+黄色发光粉。通过红外光谱、X射线衍射、扫描电镜以及荧光分光光度计对水热前驱体及目标产物进行分析表征。结果表明:水热前驱体为水合碳酸钆,经900℃焙烧后得到纯立方相的Gd2O3:Dy3+。其微观形貌为针状结构,长度约为10~200μm。Gd2O3:Dy3+的激发光谱由峰值为239,279,314,353nm的一系列激发峰组成,最强峰位于279nm处;发射光谱主要由两部分组成,分别为460~500nm的蓝光和560~590nm的黄绿光的发射峰(带),最强峰位于573nm处,归属为Dy3+的4F9/2-6H13/2跃迁。Dy3+的掺杂浓度对Gd2O3:Dy3+的发光强度有着重要的影响,发光强度随着Dy3+掺杂量的增加呈现先增大后减小的趋势,掺杂浓度为0.8%时发光强度最大,其浓度猝灭主要是由电偶极-电偶极相互作用所致。 相似文献
10.
新型结构Y_2O_3:Eu~(3+)发光材料的合成方法 总被引:2,自引:0,他引:2
综述了几种新型结构Y2O3:Eu3+发光材料的研究进展.详细介绍了核壳结构球形SiO2/Y2O3:Eu3+发光材料的合成方法,该方法可以大大降低荧光粉的成本.同时,还介绍了纳米Y2O3:Eu3+颗粒的表面修饰以及一维纳米结构材料的合成技术,并对各种合成方法所得产品的粒径、发光性能做了分析和比较,同时对各种方法的特点进行了归纳和总结. 相似文献
11.
12.
以AlN、Al2O3、Dy2O3为原料,采用高温固相反应法在1900℃、5MPa氮气气氛条件下合成AlON:Dy3+荧光粉,研究了Dy3+掺杂离子浓度对荧光粉的物相组成和发光性能的影响。结果表明:当Dy3+掺杂浓度较低时(x=0.005~0.100)合成纯的AlON相,随着Dy3+掺杂浓度的增大(x=0.125~0.250),出现微量的DyAlO3相。该荧光粉在354nm处有最强激发,其在354nm激发下呈现3个发射峰,分别位于蓝光483nm(19F9/2→6H15/2)、黄光578nm(19F9/2→6H13/2)和红光670nm(19F9/2→6H11/2),其中在578nm处黄光为最强发射。随着掺杂离子Dy3+浓度的增大,其激发峰和发射峰的强度均表现出先增大后减小的变化规律,其中当x=0.050时,发射强度最高。 相似文献
13.
应用共沉淀法,制备共掺同一敏化剂(Ce3+)和不同激活剂(Tb3+,Eu3+,Sm3+,Dy3+)的GdF3纳米晶体。在单一波长(254nm)紫外光的激发下,掺杂不同镧系激活离子的样品能够发射出不同颜色的明亮可见发光,因而适用于多色生物标记。 相似文献
14.
采用碳酸氢铵(NH4HCO3)为沉淀剂,用共沉淀法制备Yb3+和Tm3+共掺杂的Lu2O3:Yb3+,Tm3+纳米晶。研究Tm3+摩尔分数、Yb3+摩尔分数和煅烧温度对Lu2O3:Yb3+,Tm3+纳米晶的结构和上转换发光性能的影响。结果表明:所制备的纳米晶具有纯的Lu2O3相,结晶性较好。当掺杂的Tm3+浓度超过0.2%(摩尔分数)时,出现浓度淬灭效应。Tm3+和Yb3+的最佳掺杂比分别为0.2%和2%(摩尔分数)。在980nm半导体激光器的激发下,样品发射出蓝光(490nm)和红光(653nm),分别对应Tm3+的1G4→3H6和1G4→3F4跃迁。发射强度与激发功率的关系表明,Tm3+的1G4能级布居是三光子能量传递过程。随着煅烧温度的升高,上转换发光强度增强,这主要是因为随着温度的升高纳米晶表面的OH?减少和纳米晶尺寸增大。 相似文献
15.
运用高温合成的方法合成CaBPO5:Dy3+,用X射线衍射仪(XRD)、以及荧光光度计(PL)对合成产物的结构和发光性质进行了研究。在350 nm紫外光激发下,测得CaBPO5:Dy3+材料的发射光谱为一个多峰宽谱,主峰分别为486nm(4F9/2→6H15/2),和575 nm(4F9/2→6H13/2)。研究了Dy3+浓度对发光性能的影响,随着Dy3+浓度的增大,样品的发光强度先增大后减小。掺杂Dy3+的浓度为1mol%时,其发光强度达到最大值。加入电荷补偿剂Li+、Na+、K+均提高了CaBPO5:Dy3+材料的发射光谱强度,其中以Li+的情况最为明显。 相似文献
16.
采用溶剂热-溶胶凝胶两步法合成了(Y1-z,Gd z)1-x-y(P z,V1-z)O4:x Eu3+,yBi3+系列红色荧光粉。用XRD、SEM和荧光分光光度计,对试样的晶体结构、表面形貌及发光性能进行了表征。结果表明:样品为四方晶系,掺杂离子的加入对基质晶体结构影响不大;样品形貌均一,呈短杆状或椭圆状;激发光谱由位于250~400 nm的O2--V5+带和Eu3+-O2-带组成;最强发射峰位于619 nm,归属于Eu3+的5D0→7F2特征跃迁发射;Eu3+的最佳掺杂量为5 mol%(x=0.05);掺杂Bi3+、Gd3+、P5+后,样品发射强度得到显著提高,Bi3+的掺杂还会使激发带红移至400 nm。说明这类荧光粉是可用于近紫外芯片激发的白光LED用红色荧光粉。 相似文献
17.
Sr4Al14O25∶Eu^2+,Dy^3+材料的制备及发光性能影响因素研究 总被引:1,自引:0,他引:1
采用高温固相法在氢氩混合气中还原制备光致发光材料Sr4Al14O25∶Eu^2+,Dy^3+。用XRD研究Sr4Al14O25∶Eu^2+,Dy^3+的结构;用荧光光度计研究助熔剂用量、焙烧温度、恒温时间等因素对材料发光性能的影响;用稳态/寿命荧光光谱议研究发光材料的余辉衰减特征。结果表明,助熔剂用量、焙烧温度、恒温时间对材料的发光性能影响很大,且均存在一个最佳值。当基质原料中助熔剂用量为15%(质量),焙烧温度为1300℃,保温时间为6 h时,制得的材料发光性能最好,初始亮度达7000 cd/m^2,余辉时间达15 h。XRD测试表明所制备的Sr4Al14O25∶Eu^2+,Dy^3+材料属正交晶系,余辉衰减服从I=At-n规律。 相似文献
18.
CeO_2:Eu~(3+)纳米晶的溶剂热合成及其发光性能 总被引:1,自引:0,他引:1
采用溶剂热技术成功合成晶粒小于100 nm的CeO_2-Eu~(3+)和CeO_2纳米晶,其中CeO_2-Eu~(3+)样品在紫外光激发下发出明亮的橙红色光.用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、傅立叶红外(FT-IR)、紫外漫反射(UV-vis)和光致发光(PL)等手段对产品的结构和性能进行分析和表征.结果表明:CeO_2-Eu~(3+)是纯立方萤石结构的单晶粉末;Eu~(3+)已成功掺入CeO_2晶格中,纳米级的CeO_2-Eu~(3+)和CeO_2的带隙能量分别是2.831和2.925 eV;CeO_2-Eu~(3+)纳米晶在593、612、632 nm处具有较强的发射峰(橙红光),而且较高的退火温度有利于提高样品的晶化度和荧光强度. 相似文献
19.
荧光粉的发光性能对其形貌非常敏感,特别是荧光粉的尺寸。场发射显示器所需的荧光粉应是微米级的球状,然而可控的微米级荧光粉受到很少的关注。因此,本实验通过改进的共沉淀法制备合成了几微米的近球型红色Y2O3:Eu3+荧光粉。该产品在1050℃,pH值为5.5时,形貌均匀,粒径分布为0.9~3.1μm,且发光亮度较商用的增加50%以上。结果表明,通过改良的共沉淀法可以制备出一种高质量的FED荧光粉。 相似文献
20.
以PEG为表面活性剂,NaF为氟源,在水热条件下合成出均一的YF3:Eu3+发光纳米束,对其结构进行了表征,并对其形成机制进行了初步探讨。XRD分析表明:样品为结晶良好的正交相YF3。透射电镜照片表明:所得样品为直径200nm,长度约800nm的YF3:Eu3+纳米束,该纳米束由直径30nm,长度70nm的纳米晶自组装而成。SAED显示所得样品为单晶结构。荧光光谱表明:在394nm的紫外光激发下,最强发射峰出现在591nm处,对应于Eu3+的5D0→7F1的磁偶极跃迁,发橙红光。 相似文献