首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。  相似文献   

2.
采用Gleeble-1500热模拟机进行热压缩试验,研究了一种Al-Zn-Mg-Cu系7X75铝合金在变形温度300~460℃、应变速率在0.1~8.0 s-1的热变形行为,建立了合金的本构方程,并结合EBSD和TEM对微观组织进行了表征.结果表明:合金的流变应力随着变形温度的升高和应变速率的降低而降低,低应变速率下合...  相似文献   

3.
采用Gleeble-1500D热力模拟试验机进行新型Al-Zn-Mg-Cu高强铝合金的热压缩实验,变形程度为10%~80%,变形温度为300℃~450℃,应变速率为0.001s-1~10s-1。利用光学显微镜(OM)和透射显微镜(TEM)观察合金在不同压缩条件下的组织形貌特征,分析了热变形参数对微观组织的影响。研究结果表明,试验温度范围内,变形程度达到50%以上时,试样呈锻态变形组织,且变形程度的增大,有利于动态再结晶的进行;随着变形温度的升高和应变速率的减小,位错密度减小,亚晶粒尺寸增大。新型Al-Zn-Mg-Cu合金热压缩变形过程中主要的软化机制为动态回复和动态再结晶,当应变速率为0.01s-1、变形温度为300℃~400℃时,主要发生动态回复;当变形温度为450℃、应变速率在0.001s-1~10s-1范围内时,其变形以动态再结晶为主。  相似文献   

4.
采用Gleeble-1500D热力模拟试验机进行了新型Al-Zn-Mg-Cu高强铝合金的热压缩试验,变形温度为420℃~350℃,应变速率为0.01 s-1~1 s-1,变形程度为20%~80%。分析了热变形参数(变形温度、应变速率和变形程度)对组织演变机理和规律的影响。结果表明,温度和变形程度显著影响该合金组织演变机理和规律。在试验温度范围内,压缩变形程度达到60%时,原始铸态组织完全转变为均匀的锻态组织。高温有利于该合金动态再结晶过程的发生,应变适中时,组织以不连续动态再结晶产生新晶粒,再结晶分数较少;应变很大时,组织发生几何动态再结晶,再结晶分数较高。低温时,锻态变形组织基本为加工硬化或动态回复组织。  相似文献   

5.
采用X射线衍射分析(XRD)、电子背散射衍射分析(EBSD)、电导率测试、硬度测试、拉伸试验、晶间腐蚀试验和剥落腐蚀试验,研究了冷变形对超高强铝合金Al - 13.01Zn - 3.16Mg - 2.8Cu - 0.204Zr - 0.0757Sr组织及性能的影响。结果表明,相比传统固溶—时效工艺,合金在固溶—冷压缩—时效工艺下平均晶粒尺寸减小,硬度、电导率、小角度晶界比例、抗拉和屈服强度增大和抗腐蚀性能变好。其中固溶—冷压缩—时效(100 ℃×24 h)工艺下合金的硬度、电导率、屈服、抗拉强度达到了243.0 HV、25.085 %IACS、683.2 MPa和734.7 MPa,延伸率为6.1%,且晶间腐蚀深度为23.81 um,晶间腐蚀等级为二级。  相似文献   

6.
采用高温压缩实验研究了新型Al-Zn-Mg-Cu高强铝合金在温度300~450℃、应变速率0.001~10 s-1和压缩变形程度30%~80%范围内的热变形行为和组织演变。分析了该合金在实验参数范围内变形的应力-应变曲线特征。动力学分析获得该合金热变形的应力指数和激活能分别为4.97和150.07 kJ/mol,表明合金的热变形主要受扩散所控制。金相组织观察发现,随着变形温度的升高或应变速率的降低,变形组织晶内析出相逐渐溶入基体组织,晶内组织逐渐趋于均匀;同时粗大的晶粒沿变形方向拉长,晶界难溶相的碎化和弥散化程度增大。TEM和EBSD(electron back-scattered diffraction)组织分析表明,该合金在高温压缩变形过程中组织演变主要是亚晶的形成和完善的过程,热变形组织演变机理为动态回复和大应变几何动态再结晶。  相似文献   

7.
高纯铝在轧制及退火过程中微观组织与织构的演变   总被引:5,自引:0,他引:5  
应用光学金相和取向分布函数(ODF)研究和分析了热轧、冷轧及退火对高纯铝箔微观组织及织构的影响。结果表明:热轧后中间退火,微观组织为等轴晶,晶粒取向为旋转立方织构;冷轧过程中,随压下量的增加,晶粒由待轴状逐渐学演变为纤维状,织构由弱到强,最后稳定在S织构、黄酮织构和铜织构三个织构组分;成品退火过程中,发生再结晶和晶粒长大,退火织构主要由立方织构组成,另含有少量R织构。  相似文献   

8.
采用Gleeble-1500热模拟试验机对6063铝合金进行双道次热轧试验,分析了合金在变形温度为300~500 ℃,应变速率为0.001~0.1 s-1,道次间停留时间10~90 s时的流变应力和微观组织。结果表明:随着道次间停留时间增长,第二道次屈服应力减小;温度与道次间停留时间对合金的静态软化率有较大的影响。低温大应变速率短道次间停留时间下试样的强化相较多,其形貌为长条状与圆形;高温低应变速率长道次间停留时间下试样的强化相数量有所减少,其形貌以圆形为主。通过能谱分析可知,试样中的强化相以AlFeSi为主,长条状强化相为6 μm左右,圆形强化相尺寸约2 μm。  相似文献   

9.
采用光学金相显微镜、扫描电镜、能谱仪、X射线物相分析仪和透射电镜等研究了Al-10Zn-1.77Mg-1.0Cu-0.13Zr铝合金的微观组织演变和力学性能。结果表明:合金铸态组织为枝晶结构,主要存在α(Al)和η相(Mg Zn2)。双级均匀化处理后,铸态枝晶组织完全消除,非平衡共晶组织几乎完全回溶进基体。时效处理后,晶内析出相为针状η′相和球状GP区,晶界沉淀相η相沿晶界断续分布,晶界无析出区宽约23nm。基体沉淀相、晶界沉淀相以及晶界无析出区的良好匹配,使Al-10Zn-1.77Mg-1.0Cu-0.13Zr合金不仅具有超高的抗拉强度,同时还拥有良好的塑性。  相似文献   

10.
采用金相、扫描电镜和电子背散射衍射(EBSD)研究两相区退火温度和时间对热压缩态TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si)双相钛合金组织和微观取向的影响。结果表明:初始魏氏组织在850℃热压缩后被破坏,形成较为细小、扭折的片层组织,晶粒取向呈非均匀分布;在后续700和900℃退火过程中,α相变形组织和亚结构发生静态再结晶而转变为等轴状晶粒,晶粒尺寸较退火前的更为细小,再结晶程度和等轴组织比例随保温时间的延长而增加,片层组织的球化程度、晶粒取向和形貌的均匀性与合金的再结晶程度相关。在900℃退火时,α相的再结晶程度较700℃退火时的更为明显;经过120 min退火后,合金发生完全再结晶,得到较为均匀、细小的等轴状组织。  相似文献   

11.
采用一种基于等通道角挤压(ECAP)变形模式的全新的方法--DCAP方法,对6061板料进行了DCAP变形,并利用透射电镜和X射线衍射对6061铝合金DCAP变形后的退火组织和织构进行了研究.结果表明:材料经DCAP变形退火后的晶粒在330℃左右仍能保持较细的晶粒度,晶粒大小约为0.6μm;与轧制过程中通常出现的立方织构不同,DCAP退火后的主要再结晶织构为旋转立方织构{001}〈110〉,并伴有{111}〈110〉次要织构分量;退火时旋转立方织构表现出的强烈的择优生长趋势,是其成为DCAP变形后主要再结晶织构的原因.  相似文献   

12.
《塑性工程学报》2014,(2):65-70
为建立6005A铝合金的塑性变形的再结晶模型,该文采用Gleeble-1500试验机研究6005A铝合金的热压缩行为和微观组织。实验温度为623K、673K、723K、773K,应变速率为0.01s-1、0.1s-1、1s-1、10s-1,压缩量70%。结果表明,变形过程中发生了动态再结晶,应力随温度的升高和应变速率的减小而减小;其真应力出现峰值,利用应力应变和晶粒度等数据拟合6005A铝合金的Yada再结晶模型,并通过FEM仿真验证,表明平均晶粒尺寸和再结晶体积分数实验值与模拟值吻合良好。  相似文献   

13.
结合光学显微镜(OM)、电子背散射衍射技术(EBSD)、透射电子显微镜(TEM)等,分析了低速热变形对挤压态Mg-Zn-Mn合金显微组织及室温压缩性能的影响。结果表明:Mg-Zn-Mn合金在200~300℃的低速热压缩过程中存在明显的动态再结晶和动态析出,热压后样品组织明显细化且基面织构减弱。对于热压后样品,其抗压强度和断裂应变随变形温度的升高先增大后减小。对于250℃下热压缩的样品,其抗压强度和断裂应变随热压变形量的增大先减小后增大。其中,在250℃下热压缩且变形量为70%时,合金的性能提升最为显著,在不损害塑性的情况下,其屈服强度(σ0.2)和抗压强度分别达到247 MPa和504 MPa,比挤压态时分别提升了63%和19%。  相似文献   

14.
采用Gleeble-1500D热力模拟试验机分别对7055铝合金在不同温度和应变速率下进行多道次热模拟压缩试验,利用OM分析合金在不同温度和应变速率条件下热压缩的组织特征,研究了热变形工艺参数对7055铝合金热变形组织的影响。试验结果表明,随热变形温度的增加,7055铝合金在多道次热压缩过程中合金回复和再结晶程度更大,原始晶粒的长宽比降低,再结晶晶粒尺寸增加。随着应变速率的增加,7055铝合金在多道次热压缩过程中合金回复和再结晶程度降低,原始晶粒的长宽比增加,原始晶粒内部的亚结构发展得更加丰富,再结晶晶粒尺寸减小。  相似文献   

15.
利用Gleeble-3800热模拟试验机对新型Co-Ni基高温合金进行热压缩试验,研究其在变形温度为950~1100℃、应变速率为0.01~10 s-1、真应变为0.693时的热变形行为和微观组织演变。结果表明,合金流动应力随变形温度的升高或应变速率的降低而减小。合金平均晶粒尺寸随变形温度的升高而增加,降低变形温度和提高应变速率可细化动态再结晶晶粒。基于EBSD和TEM分析表明,合金热变形过程中非连续动态再结晶(DDRX)作为主要动态再结晶(DRX)机制,孪晶形核作为辅助形核机制。  相似文献   

16.
采用X线衍射仪和EBSD分析研究近α型TA15钛合金在不同工艺参数下的热压缩变形组织和织构演变规律。结果表明:TA15合金热变形后淬火组织中存在针状马氏体α′相;晶粒在(101)和(002)滑移面上的滑移率先达到临界分切应力,发生塑性变形,使组织细化,并最终导致变形组织的择优取向;在小应变速率(0.01 s-1)和低变形温度(950℃)条件下,动态再结晶分数较高,产生较强的再结晶织构;随着变形温度和应变速率的升高,材料晶粒取向性减弱。  相似文献   

17.
7B50铝合金热变形组织演变   总被引:2,自引:0,他引:2  
周坚  潘清林  张志野  陈琴 《热加工工艺》2012,41(2):20-23,132
利用Gleeble-1500热模拟试验机对7B50铝合金进行了变形温度300~460℃、应变速率0.001~1 s-1条件下的等温压缩试验,通过金相显微镜(OM)和透射电镜(TEM)等手段,研究分析了该合金在变形过程中热变形参数对微观组织的影响。结果表明:在变形初期,流变应力随应变的增加而增大,达到峰值后逐渐趋于平稳;应力峰值随温度的升高而减小,随应变速率的提高而增大;当变形温度较低或应变速率较高时,合金仅发生了动态回复,且合金组织中存在大量的位错和亚晶;随着温度的升高和应变速率的降低,合金中的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

18.
Ti6Al4V钛合金的变形组织及织构   总被引:1,自引:0,他引:1  
在温度850~930°C、应变速率0.01~1 s-1的条件下,对初始组织为等轴组织的Ti6Al4V钛合金进行变形程度为70%的热压缩变形实验,研究合金的变形组织及织构。结果表明,当温度低于900°C、应变速率高于0.1 s-1时,合金的组织主要是拉长的α晶粒;而在高于900°C以及低应变速率下,则会发生动态再结晶。电子背散射衍射(EBSD)结果显示,合金在再结晶过程中亚晶界吸收位错,最终形成大角晶界。在930°C时动态再结晶已基本完成,水冷至室温时形成针状α相。与原始组织相比,合金在930°C变形时织构得到增强,低于930°C变形时织构变弱。  相似文献   

19.
采用热模拟试验机对轧制态6082-T6铝合金进行热压缩试验,分析了合金在变形温度100~400 ℃,应变速率0.01 s-1条件下的流变应力,对不同温度热变形的微观组织进行了表征。结果表明,轧制态6082铝合金的力学性能受变形温度和轧制方向的影响。变形过程中应力呈现负的温度敏感性,即随着变形温度升高,应力不断下降。合金表现出明显的力学性能各向异性,压缩强度在与轧制方向呈0°和90°较高,45°方向强度较低。经过热压缩变形后,与轧向呈不同方向的6082-T6铝合金的晶粒组织均沿着剪切力方向发生扭曲,同时,变形温度对晶粒组织的演变影响不大。随着变形温度的升高,合金基体内的位错密度明显下降,析出相发生粗化。  相似文献   

20.
采用常规拉伸和慢应变速率拉伸方法测试了Al-9.88Zn-2.40Mg-2.32Cu-0.12Zr铝合金在T6,RRA及T73时效状态下的力学性能和抗应力腐蚀性能,并通过SEM和TEM观察了慢应变速率拉伸断口形貌及析出相特征。TEM结果表明,T6,RRA和T73时效状态的晶内析出相分别以GP区+η'相、η'相+η相、η相为主,并且晶内和晶界析出相尺寸以及晶界PFZ宽度依次增大:同时晶界析出相逐渐由长条状连续分布逐渐转变成球状不连续分布。这些微观组织特点使得3种时效状态下实验合金具有不同应力腐蚀开裂倾向、常规拉伸性能和断口形貌特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号