首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对比分析了锂离子电池的正极材料锂钻氧系、锂锰氧系、锂镍氧系材料以及目前颇具潜力的正极替代材料:含铁的聚阴离子化合物和高分子聚合物的微观晶体结构特征,讨论了由于材料晶体结构的差异产生的不同电化学性能提出了锂离子二次电池正极材料在结构上所必须具备的特征。  相似文献   

2.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:3,自引:0,他引:3  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料LiNi0.5Co0.5O2,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应,并使反应产物粒度均匀和成分均匀。制备的LiNi0.5Co0.5O2为单一的α-NaFeO2层状结构,粉末粒度分布范围窄,平均粒径约为8μm-10μm。电化学性能测试结果表明,在0.2mA/cm^2充放电流密度和3.0V-4.2V电压范围内,首次充电容量为173mAh/g,放电容量为148mAh/g。循环次数达30次时, 放电容量还有129mAh/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的LiNi0.5Co0.5O2正极材料。  相似文献   

3.
在空气气氛中合成了LiCo0.3Ni0.7-xSrxO2二元掺杂锂离子电池正极材料,研究了不同掺Sr2 量对材料的结构与电化学性能的影响,用XRD、SEM及电性能测试考察了材料的结构、形貌及其电化学性能.结果表明:Sr2 的掺入量对材料的结构与电化学性能影响较大,随着掺Sr2 量的增加,X射线衍射图中材料的特征峰向低角度飘移,晶胞参数a和c增大,晶胞体积增大; 电性能测试结果表明:适量的掺Sr2 有利于提高材料中Li 的扩散能力,抑制John-Teller效应,降低阳离子混排现象,提高材料的电化学稳定性,当x=0.003,LiCo0.3Ni0.697-Sr0.003O2显示出较优的电化学性能,首次放电容量为162mA·h·g-1,首次放电效率为90.6%; 40次循环后其放电容量仍为153mA·h·g-1,容量损失为7%,显示出较好的循环稳定性.  相似文献   

4.
将前驱体Ni0.5Co0.2Mn0.3(OH)2以及前驱体和碳酸锂的混合物分别进行热处理,初步探讨其在高温热处理过程中的结构变化以及热处理方式对材料电化学性能的影响。采用X射线衍射(XRD)、热重-差热分析(TG-DSC)、扫描电镜(SEM)以及恒流充放电测试技术对合成材料物理性能和电化学进行测试和表征。结果表明:前驱体在热处理过程中,其结构经历由Me(OH)2→NiCoOOH→Mn(Ni,Co)2O4的转变过程;而前驱体与碳酸锂的混合物则经历由两相混合物→三元材料+Li2CO3→三元材料的结构转变过程;相比于单一高温平台热处理而言,采用低高温双平台热处理所合成的材料可有效降低阳离子混排,使其具有更好的电化学性能。电化学测试结果表明:在3.0~4.4V电压范围内,其在25℃、0.5C下首次放电比容量为160.5 mA·h/g,60次循环后,容量保持率达98.9%。  相似文献   

5.
Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能   总被引:1,自引:0,他引:1  
以Li2SiO3、Mn(CH3COO)2·4H2O和TiO2为原料,利用传统高温固相合成法成功合成出Li2Mn0.9Ti0.1Si04锂离子电池正极材料.采用XRD、FESEM等手段分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料样品的电化学性能.研究结果表明,固相合成的产物主相为Li2Mn1-x,TLSiO4,同时存在少量的杂质,掺杂Ti后,材料表面形貌从近球形转变为非球形颗粒,颗粒尺寸略有增大,为200~500nm.实验结果表明,Ti掺杂以后,Li2MnSiO4正极材料的可逆容量和循环寿命都得到提高.正极材料电化学性能提高的机理在于Ti掺杂稳定了Li2MnSiO4正极材料的结构.  相似文献   

6.
Al掺杂Li_2MnSiO_4锂离子电池正极材料的合成和电化学性能   总被引:1,自引:1,他引:0  
以Li2SiO3、Mn(CH3COO)2.4H2O和Al(OH)3为原料,用传统高温固相合成法成功制备出Li2Al0.1Mn0.9SiO4锂离子电池正极材料。采用XRD、FESEM分析了正极材料的相组成、结构和形貌,利用电池测试仪测试了正极材料的电化学性能。研究结果表明,固相合成的产物主相为Li2Al0.1Mn0.9SiO4,同时存在少量的杂质,产物表面形貌为非球形颗粒,颗粒尺寸为100~500 nm。实验结果表明,Al掺杂后,正极材料的可逆容量和循环寿命都得到提高。正极材料电化学性能提高的机理在于Al掺杂稳定了Li2MnSiO4正极材料的结构。  相似文献   

7.
锂离子电池正极材料LiNiO_2的合成   总被引:1,自引:0,他引:1  
介绍了以氢氧化锂和硝酸镍为原料,通过高温法合成氧化锂镍的方法,并讨论了合成条件对产物结构的影响。实验结果表明:反应温度、反应时间、反应气氛、Li/Ni摩尔比对产物结构有较大的影响,通过合成条件的优化得到了具有高结晶层状结构的LiNiO2。  相似文献   

8.
锂离子电池正极材料LiNixCo1-2xMnxO2的制备及电化学性能   总被引:1,自引:0,他引:1  
采用改进的高温固相法合成锂离子电池正极材料LiNixCo1-2xMnxO2.考察不同x值、不同Li/(Ni+Co+Mn)摩尔比、不同焙烧温度、不同煅烧时间对其电化学性能的影响并通过XRD对其结构进行表征.结果表明,提高Co含量可以改善材料的循环性能;当n(Li)/n(M)(M=Ni, Co, Mn)=1.10,在950~1000 ℃煅烧20 h时,可得到电化学性能优良的正极材料.  相似文献   

9.
锂离子电池正极材料Li3V2(PO4)3的研究进展   总被引:1,自引:0,他引:1  
Li3V2(PO4)3具有较高的能量密度、更好的电化学性能和热力学稳定性而成为潜在的、最有前途的锂离子电池正极材料。本文对Li3V2(PO4)3研究现状进行了全面介绍,综述了其电化学性能、微观结构、制备方法、改性研究以及其他研究,提出了目前研究中存在的问题,并就Li3V2(PO4)3作为锂离子电池正极材料的研究前景进行了展望。  相似文献   

10.
采用Pechini法在 80 0℃空气中焙烧 6h制备LiNixMn2 -xO4试样 (x =0 ,0 .0 5 ,0 .1,0 .2 ,0 .3,0 .4 ,0 .5 )。经XRD测试表明除LiNi0 .5Mn1.5O4以外 ,其它的试样均为纯净的尖晶石结构。尖晶石LiNixMn2 -xO4试样电极在 3.3~ 4 .5V以及 4 .5~ 4 .8V范围内的电化学性能测试表明 :在 3.3~ 4 .5V范围内 ,试样初始充放电容量随Ni元素掺杂比例的增加而降低 ;在 4 .5~ 4 .8V范围内 ,试样初始充放电容量随Ni元素掺杂比例的增加而增大 ;在 3.3~ 4 .8V范围内 ,试样总的初始容量基本不变 ;在 3.3~ 4 .5V范围内 ,试样的循环性能随Ni元素掺杂比例的增加而提高  相似文献   

11.
锂离子电池正极材料LiMnO_2的表面修饰及电化学性能   总被引:2,自引:0,他引:2  
运用热处理技术分别制备B2O3、CuO和FePO4包覆的LiMnO2锂离子电池正极材料。采用X射线衍射(XRD)和扫描电镜(SEM)对材料的晶体结构和表观形貌进行分析,通过恒电流充放电以及电化学阻抗技术(EIS)分析其电化学性能。结果表明:包覆后材料的电化学阻抗与Warburge阻抗值有所增大,但包覆能有效抑制正极材料LiMnO2在电化学过程中锰的溶解,改善和提高材料的充放电循环性能和结构的稳定性。  相似文献   

12.
采用喷雾干燥法制备锂离子电池用层状富锂锰基正极材料Li(1+x)Ni0.166Co0.166Mn0.667O(2.175+x/2)(x=0.3,0.4,0.5,0.6),通过X射线衍射(XRD)、扫描电子显微镜(SEM)、等离子体发射光谱(ICP)、热重-差热分析(TG-DSC)、比表面积、粒度分布和恒流充放电等测试手段对材料的结构、形貌及电化学性能进行表征。结果表明:所制得的富锂锰基正极材料为三方层状结构(mR3)的LiNi1/3Mn1/3Co1/3O2和单斜层状结构(C2/m)的Li2MnO3组成的固溶体,且具有多孔球形形貌。当x=0.4时,材料具有最优的电化学性能。在2.0~4.8 V电压范围内,25 mA/g电流密度下材料的首次放电比容量高达277.5 mA·h/g,20周循环后容量保持率达95.3%,500 mA/g电流密度下放电比容量仍达192.5 mA·h/g。  相似文献   

13.
LiFePO4/C锂离子电池正极材料的电化学性能   总被引:7,自引:2,他引:7  
以碳凝胶作为碳添加剂,采用固相法制备了复合型LiFePO4/C锂离子电池正极材料.研究了不同掺碳量对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.结果表明:样品中的碳含量(质量分数)分别为0%、5%、10%、22%,所得样品均为单一的橄榄石型晶体结构,碳的加入使LiFePO4颗粒粒径减小.另外,碳分散于晶体颗粒之间,增强了颗粒之间的导电性.合成样品的电化学性能测试结果表明,掺碳后的LiFePO4放电比容量和循环性能都得到显著改善.其中,含碳量为22%的LiFePO4/C在0.1 C倍率下放电,首次放电容量达143.4 mA·h/g,充放电循环6次后电容量为142.7 mA·h/g,容量仅衰减0.7%.  相似文献   

14.
锂离子电池正极材料LiNi_(0.5)Co_(0.5)O_2制备与电化学性能   总被引:1,自引:1,他引:0  
采用球磨湿混和旋转合成相结合的新工艺制备了锂离子电池正极材料 L i Ni0 .5Co0 .5O2 ,并对材料进行了粒度、化学成分以及电化学性能测试。球磨湿混工艺能将原料混合均匀 ,并能有效地使粒度细化。旋转合成工艺能使混合料在均匀的温度场中进行反应 ,并使反应产物粒度均匀和成分均匀。制备的 L i Ni0 .5Co0 .5O2 为单一的 α- Na Fe O2 层状结构 ,粉末粒度分布范围窄 ,平均粒径约为 8μm~ 10μm。电化学性能测试结果表明 ,在 0 .2 m A/cm2 充放电流密度和 3 .0 V~ 4 .2 V电压范围内 ,首次充电容量为 173 m Ah/g,放电容量为 14 8m Ah/g。循环次数达 3 0次时 ,放电容量还有 12 9m Ah/g,循环稳定性良好。球磨湿混和旋转合成相结合的固相合成新工艺能制备出电化学性能良好的L i Ni0 .5Co0 .5O2 正极材料。  相似文献   

15.
动力锂离子电池正极材料的研究评述   总被引:3,自引:0,他引:3  
通过衡量锂离子电池正极材料的安全性,认为LiMn2O4和LiMPO4可以作为动力电池的正极材料,综述LiMn2O4和LiMPO4正极材料的研究现状,重点对各种材料的合成、结构和性能进行总结和探讨.从目前来看,LiMn2O4仍然是主流的动力电池正极材料,但从长远来看,LiMPO4特别是Li3V2(PO4)3是动力锂电池正极材料的发展趋势.  相似文献   

16.
固相法合成锂离子电池正极材料Li2FeSiO4   总被引:3,自引:1,他引:2  
以SiO2、Li2CO3与FeC2O4·2H2O为原料,利用固相法制备出锂离子电池正极材料Li2FeSiO4,并通过X射线衍射,扫描电镜对材料的结构和形貌进行了分析.结果表明,制备出的Li2FeSiO4正极材料,粒度为300~400nm,颗粒分散均匀.在电压1.5~4.8V,室温下用0.1C倍率恒电电流进行充放电测试,Li2FeSiO4正极材料首次充电容量为297mAh/g,放电容量接近170mAh/g,具有良好的电化学性能.  相似文献   

17.
采用高温固相法合成锂离子电池正极材料LiFe0.9Ni0.1PO4,研究了反应条件对合成产物的影响. 利用X射线衍射(XRD)和扫描电镜(SEM)对所得样品的晶体结构、表面形貌等进行了表征. 结果表明反应温度和时间对LiFe0.9Ni0.1PO4晶体结构及材料性能均有较大影响,其中650℃下焙烧20h合成出的样品电化学性能最佳;在20mA/g 的电流密度下进行恒流充放电时,首次放电比容量可达145mA·h/g,循环30次后比容量仍为135mA·h/g,容量衰减仅为6.9%.  相似文献   

18.
锂离子电池正极材料Li2FeSiO4/C的微波合成   总被引:5,自引:0,他引:5  
采用高能球磨结合微波合成工艺,以Li2CO3、FeC2O4-2H2O、纳米SiO2和葡萄糖为原料合成锂离子电池正极材料Li2FeSiO4/C.利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、表观形貌及电化学性能进行表征.考察超导电碳黑的添加、微波处理时间以及微波加热温度等对Li2FeSiO4/C材料合成及其性能的影响.结果表明:以超导电碳黑为微波耦合剂,采用微波合成法在650 ℃下处理10 min可快速制备具有正交结构的Li2FeSiO4/C材料;获得的Li2FeSiO4/C材料颗粒细小均匀,具有较好的电化学性能;在60 ℃下以C/20对Li2FeSiO4/C材料进行充放电时,其首次放电容量为121.7 mA-h/g,10次循环后其放电容量仍保持为119.2 mA-h/g.  相似文献   

19.
采用共沉淀法可以制备出首次放电容量高达210 mA.h/g的LiNi0.5Mn0.5O2材料(2.8~4.5 V,电流密度30 mA/g),但材料循环性能受制备过程中的处理工艺影响很大,处理不严格将导致材料循环性能严重下降。围绕材料的循环性问题,对其机理进行了分析并在此基础上对制备工艺进行了进一步改善:分别从配锂方式,烧结过程中的升降温速率以及烧结的保温制度进行了系统研究。结果表明:采用改进配锂方式,缓慢升温速率(2℃/min),高低温结合的烧结制度和快速风冷工艺所制备的材料首次放电容量达到188 mA.h/g,30个循环后仍保持在174 mA.h/g,循环效率有了明显的提高。  相似文献   

20.
以共沉淀法制备的过渡金属氢氧化物前驱体合成锂离子电池层状正极材料Li[Ni1/3Co1/3Mn1/3]O2。考察氨与过渡金属阳离子的配位效应对Li[Ni1/3Co1/3Mn1/3]O2材料的结构和电化学性能的影响。SEM分析结果表明,当NH3·H2O与过渡金属阳离子的总摩尔比为2.7:1时,获得了分布均一的颗粒为过渡金属氢氧化物共沉淀,合成的Li[Ni1/3Co1/3Mn1/3]O2材料的平均粒径约为500nm,振实密度接近2.37g/cm3,接近商品化的LiCoO2正极材料的振实密度。XRD分析结果表明,合成的Li[Ni1/3Co1/3Mn1/3]O2材料具有六角晶格层状结构。Li/Li[Ni1/3Co1/3Mn1/3]O2电池在2.8-4.5V电压范围内的0.1C倍率测试结果表明,首次放电容量达181.5mA·h/g,0.5C倍率循环50次后的放电容量为170.6mA·h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号