首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以挤压AZ31B镁合金板为原料,通过温轧与退火制备了弱各向异性的镁薄板。研究了在温轧及随后退火过程中挤压镁板组织及各向异性的变化,获得在室温下具有较高综合力学性能与成形性(屈服强度>250 MPa,抗拉强度>300 MPa,伸长率>15%,杯突IE=2.8 mm),且各向异性低的板材。挤压镁板中的非基面织构将完全或部分中和后续轧制过程中的基面织构,是获得低各向异性的关键,随后的退火将进一步弱化板材的基面织构和各向异性。相比于伸长率,各向异性与成形性的相关性更大。  相似文献   

2.
通过光学显微镜、室温拉伸试验、显微硬度计、X射线衍射仪、扫描电镜等方法研究了累积叠轧温度对AZ31镁合金晶粒尺寸、基面织构、界面结合情况及力学性能的影响。结果表明:3道次累积叠轧后的AZ31镁合金晶粒细化效果明显,硬度增大,随着累积叠轧温度的升高,晶粒细化效果减弱,硬度增加趋势减弱。累积叠轧温度升高有弱化基面织构的作用。AZ31镁合板材在450 ℃累积叠轧3道次,综合力学性能最佳,为显微硬度70.64 HV0.05,抗拉强度288.64 MPa,屈服强度203.76 MPa,伸长率16.96%,界面结合强度21.53 MPa。  相似文献   

3.
基于电工钢传统轧制技术,采用温轧工艺制备了无取向Fe-3.1wt%Si钢,并研究了温轧温度对全流程组织、织构及成品板磁性能的影响规律。结果表明,随轧制温度的升高,变形晶粒内部的剪切带密度先升高后降低,温轧板织构强度逐渐减弱。轧制温度为120、360℃时,冷轧板与温轧板具有锋锐的α织构和中等强度的γ织构与λ织构;轧制温度达到600℃时,温轧板中出现了较强的Goss织构。退火板平均晶粒尺寸随轧制温度的增大先增大后减小。冷轧及轧制温度为120、360℃的退火板中的γ织构强度相近,其中120℃温轧后的退火板具有最强的λ织构,360℃温轧后退火板中γ织构与λ织构强度均较低。磁性能在120℃温轧时达到最优,此时铁损P1.5/50为2.18W/kg,磁感应强度B50为1.70 T。  相似文献   

4.
采用多道次轧制方法制备AM60(Mg-6.0Al-0.3Mn,质量分数%)和ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn)镁合金板材,并研究镁合金板材的力学性能和织构特征。研究表明,在添加Ca的镁合金轧板中,细小的再结晶晶粒表现出特定的取向特征,从而改变了轧板的整体织构特征;固溶至镁基体中的Ca元素促使晶粒c轴由板坯法线方向向板宽方向偏转,亦可明显弱化板材织构。这导致了含Ca的镁合金板材表现出与稀土镁合金类似的织构特征。  相似文献   

5.
《轻金属》2015,(10)
采用六辊轧机在不同轧制温度和轧制方式下制备了镁铝复合板,并对轧后试样进行显微组织观察和力学性能测试。结果表明,镁铝复合板的结合强度随轧制温度的升高先升高后降低,在350℃时,复合板结合强度达到峰值。不对称轧制搓轧区有剪切变形,复合界面上的变形更为剧烈,并对基体材料AZ31镁合金的晶粒细化与均匀性有着明显的作用,板材边部的晶粒不仅被压扁而且还会被拉长呈现长条状。在确定的最佳轧制工艺350℃进行不对称轧制,制备的镁铝复合板屈服强度可达153MPa,抗拉强度达230MPa。  相似文献   

6.
向承翔 《热加工工艺》2015,(6):177-179,182
以AZ31B镁合金材料为原料制备了汽车板样品,研究了退火工艺对其力学性能的影响。结果表明:经400℃退火,保温4 h后的力学性能最佳,横向屈服强度和纵向屈服强度分别为200 MPa和238 MPa,其横向抗拉强度与纵向抗拉强度分别为328 MPa和368 MPa,对应的其横向伸长率和纵向伸长率分别为18.95%和19.65%。合适的退火温度和退火保温时间可以消除轧制过程中的形变孪晶,进而细化晶粒,提高退火后镁合金板的力学性能。  相似文献   

7.
通过数值模拟分析了AZ31镁合金中厚板在轧制变形区的温度分布,建立了轧后镁板平均温度关于轧辊温度、轧制速度、轧制压下量、板材厚度的经验公式,并辅以相应的实验验证。结果表明:当镁板较薄、轧制速度较小时,镁板中心层的塑性变形热在轧制变形区向表层传递,中心层的温升不能代表镁板塑形变形产生的温升;轧后镁板的平均温度与轧辊温度、轧制速度、轧制压下量正相关,与板材厚度反相关;轧后镁板平均温度的计算值与实验值的最大相对误差为8.34%,平均相对误差为7.4%,经验公式能很好的预测轧后镁板的平均温度。经验公式的提出,利于实现“AZ31镁合金板材的等温轧制”控制;对镁合金轧制工艺制度的合理制定以及后续轧制设备的选择有重要指导意义。  相似文献   

8.
本文研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280MPa、180MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制相关文献和本文一系列实验研究的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本文所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向和横向的各向异性。  相似文献   

9.
采用大应变轧制技术制备AZ31合金板材,研究了轧制温度对板材显微组织、宏观织构和力学性能旳影响。结果表明,轧制温度为200℃时,板材发生开裂,轧制温度升高至250~400℃时,大应变轧制可以成功进行;在250~400℃的轧制温度范围内,板材再结晶晶粒尺寸和基面织构强度随轧制温度的升高而增大,其力学性能则随轧制温度的升高而下降;轧制温度为250℃时,板材具有良好的综合力学性能,其抗拉强度、屈服强度和伸长率分别为325.7 MPa、213.2 MPa和29.8%。  相似文献   

10.
轧制工艺对AZ31B镁合金薄板组织与性能的影响   总被引:2,自引:1,他引:1  
研究了轧制温度和轧制速度对AZ31B镁合金薄板微观组织演变和力学性能的影响。结果表明,轧辊加热有利于镁合金薄板成型;AZ31B镁合金在低温或低速轧制时薄板纵向组织为大量的切变带,切变带区域包含大量孪晶组织,横向组织为含极少量孪晶的等轴晶组织;在轧制温度为400℃和轧制速度为16m/min轧制时,由于动态再结晶,横纵截面组织均为等轴晶。AZ31镁合金薄板的最佳轧制制度为轧辊温度为70℃、轧制温度为400℃、轧制速度为6m/min,此工艺轧制的薄板横向抗拉强度、屈服强度和伸长率分别为350MPa、300MPa和12%,纵向为345MPa、290MPa和11.2%,纵向与横向性能差别明显减小。  相似文献   

11.
Ingot casted AM31 alloys were rolled at a warm temperature of 350 °C and subsequently rolled at 300 °C using equal speed rolling (ESR) and differential speed rolling (DSR) with speed ratios of top roll to bottom roll, 1.2 and 1.5, respectively. Microstructures, textures and mechanical properties of the as-rolled AM31 sheets were examined. Ductility was improved by DSR due to inclination of basal poles and weakened texture. The sheets produced by DSR with a speed ratio of 1.2 showed highest strength and ductility at room temperature, which can be attributed to homogeneous fine grain distribution and tilted basal texture.  相似文献   

12.
脉冲电流轧制对AZ31镁合金微观组织与力学性能的影响   总被引:1,自引:0,他引:1  
对比研究脉冲电流轧制工艺与温轧工艺对AZ31镁合金板材的力学性能、织构、微观组织与沉淀相等方面的影响。结果表明:脉冲电流具有促进冷轧AZ31镁合金低温再结晶能力的作用。脉冲电流轧制后的镁合金板材组织由细小的等轴再结晶粒与析出相构成,没有发现孪晶组织,并且完全再结晶,原始晶粒均被细小的再结晶晶粒取代,再结晶晶粒内的位错密度低。而温轧镁合金组织则由稍拉长变形孪晶、粗大的再结晶晶粒和析出相构成,再结晶的晶粒内位错密度高。两种轧制方式下的镁合金析出相均为Mg17Al12。脉冲电流轧制后镁合金的织构具有典型基面织构的特征,而脉冲电流轧制镁合金的织构则出现横向偏转;脉冲电流轧制后镁合金的屈服强度与伸长率均比温轧镁合金的大,但抗拉强度正好相反。  相似文献   

13.
The microstructures and mechanical properties of Mg-2MM-2Sn-1Al-1Zn (ETAZ2211) sheets fabricated under different conditions have been investigated. Two hot-rolling routes following extrusion have been carried out at 300 °C or 400 °C. One method is to roll the extruded strips parallel to the extrusion direction (ED); the other is to roll the extruded strips perpendicular to the extrusion direction (TD). The strength and the elongation-to-fracture of specimens prepared by a combination of extrusion and rolling processes are increased dramatically when compared those of the simply rolled specimens. Especially, the TD alloy sheet rolled at 300 °C exhibits the best combination of strength and ductility, i.e. yield strength of 178.5 MPa, ultimate tensile strength of 239.1 MPa, uniform elongation of 24.4 % and elongation-to-fracture of 37.9 %. Observation of texture reveals that the intensity of (0002) texture is lower for the TD alloy sheets than that for the ED alloy sheets, indicating that the texture intensity is reduced by change of the rolling direction.  相似文献   

14.
Hot shear spinning experiments with Mg–3.0 Al–1.0 Zn–0.5 Mn(AZ31 B, wt%) magnesium alloy sheets were conducted at various temperatures, spindle speeds and feed ratios to investigate the effects of these processing parameters on the microstructure, crystallographic texture and mechanical properties. The AZ31 B sheet displayed good shear formability at temperatures from 473 to 673 K, spindle speeds from 300 to 600 rev/min and feed ratios from 0.1 to 0.5 mm/rev. During the dynamic recrystallization process, the grain size and texture were affected by the deformation temperature of the hot shear spinning process. Each of the spun sheets presented a strong basal texture, and the c-axis of most of the grains was parallel to the normal direction. The optimal hot shear spinning parameters were determined to be a temperature of 473 K, a spindle speed of 300 rev/min and a feed ratio of 0.1 mm/rev. The yield strength, ultimate tensile strength and elongation in the rolled direction reached 221 MPa, 288 MPa and 14.1%, and those in the transverse direction reached 205 MPa, 280 MPa and 12.4%, respectively. The improved strength and decreased mechanical anisotropy resulted from the fine grain size and strong basal texture.  相似文献   

15.
吕家舜  乔磊  李锋  何浩  杨洪刚  周芳 《轧钢》2016,33(1):10-14
采用铁素体区轧制工艺能够大大提高IF钢冷、热轧带钢的深冲性能。本研究通过工业试验验证了铁素体区轧制工艺的可行性。试制带钢组织、织构及性能检测的结果表明:热轧带钢1/4厚度处和芯部初步形成了γ织构,连续退火冷轧带钢中形成了强烈的γ织构,冷轧带钢的伸长率达到50%以上,r值达到3.15,具有优良的成形性能。  相似文献   

16.
以粉末冶金方法生产的25min×280min×320mm纯钼及钼镧合金板坯为实验原料,研究了不同的热轧终轧加工率对钼及钼镧合金板显微组织及力学性能的影响。结果表明,将纯钼及钼镧合金板热轧终轧加工率控制在50%以上,轧后纯钼板材的显微组织为细化的纤维流线组织,纵、横向的吃分别为795,885MPa,也分别达到27%,21%,其后续的温轧加工不开裂;而钼镧合金板材不论是显微组织,还是力学性能均好于纯钼。进一步的生产实践证明,将钼及钼镧合金板的热轧终轧加工率控制在50%以上,其强度、塑性和硬度匹配良好,弯曲性能和后序的温轧加工性能明显提高。  相似文献   

17.
将双辊铸轧运用于制造Al-Zn-Mg-Cu合金带材。研究带材减薄率及热处理温度对合金再结晶行为的影响。结果表明:在冷轧率为60%、热处理制度为500℃的条件下处理1h时,合金带材具有细晶组织(平均晶粒尺寸约为13μm,晶粒纵横比约为1.7)和高的力学性能(UTS≥360MPa,δ≥20%)。研究了微观组织对Al-Zn-Mg-Cu合金带材力学性能的影响。合适的双棍铸轧热处理及加工工艺能制造低价、高强的Al-Zn-Mg-Cu合金带材。  相似文献   

18.
采用同步轧制(NR)和异步轧制(AR)工艺对AZ31镁合金挤压板材进行了轧制,研究了轧制过程中组织和织构的演化,以及总压下量和异步比对轧材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,同步轧制与异步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。轧制过程中,在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使同步轧制与异步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;而当压下量达到24%时,孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替变化;异步轧制板材在压下量达到24%左右时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到0.163。  相似文献   

19.
Influence of three different rolling routes on mechanical anisotropy and formability of commercially pure titanium sheet was investigated. Route A and Route B are unidirectional rolling (UR) where the rolling direction is along initial rolling direction (RD) and transverse direction (TD), respectively. Route C is cross rolling (CR) where the rolling direction is changed by 90° after each rolling pass. The microstructure and texture, tensile mechanical properties including strength and elongation, and also the anisotropy of the UR and CR sheets were investigated at room temperature. The XRD results indicate that the texture intensity of rolled samples gradually weakens from Route A to Route C. Compared with Route A and Route B rolled samples, the Route C rolled samples show a smaller planar anisotropy. The deep drawing tests reveal that cross rolling can avoid the occurrence of earing. Erichsen tests indicate that rolling routes have an effect on stretch formability of pure titanium sheet.  相似文献   

20.
在250 ℃对轧制-热处理态ZK60镁合金板材进行9道次不同路径的轧制试验。采用光学显微镜、电子万能试验机、SEM、XRD等研究了轧制试验后ZK60镁合金的显微组织、室温拉伸性能、断口形貌及晶粒择优取向。结果表明:轧制路径对ZK60镁合金板材的晶粒尺寸变化无明显影响,但压下量对镁合金组织内的孪晶变化有很大影响;轧制路径的变化对ZK60镁合金板材的各向异性和力学性能有较大影响,在交叉+45°的路径下轧制后ZK60镁合金板材,各向异性较弱,具有良好的综合力学性能和轧制成形能力,其屈服强度、抗拉强度和伸长率分别达到244.31 MPa、371.14 MPa和25.46%;交叉+45°路径轧制对ZK60镁合金的晶粒择优取向有明显影响,能够改善镁合金板材的晶粒择优取向和各向异性,提高ZK60镁合金的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号