首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用9种不同的激光工艺参数在316L不锈钢基板上熔覆成形了Co基WC复合涂层。利用光学显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)检测了熔覆层的显微组织并分析了强化机制;利用显微硬度计和摩擦磨损实验机分析了熔覆层的横截面硬度分布和表面摩擦磨损性能。结果表明:激光功率分别为1.2 kW和1.6k W时成形的试件没有裂纹,物相组成不受激光功率和扫描速率的影响,主要由WC、Co和W2C相组成,但1.2 kW的激光功率会产生气孔等缺陷,导致成形试件硬度低于1.6 kW。又由于同一激光功率下受到扫描速率的影响,使参数为1.6 kW下10 mm·s~(-1)的扫描速率的试件组织和性能最优,硬度最高达到1698 HV,摩擦系数为0.73。  相似文献   

2.
采用9种不同的激光工艺参数在316L不锈钢基板上熔覆成形了Co基WC复合涂层。利用光学显微镜(OM)、扫描电子显微镜(SEM)和X射线衍射仪(XRD)检测了熔覆层的显微组织并分析了强化机制;利用显微硬度计和摩擦磨损实验机分析了熔覆层的横截面硬度分布和表面摩擦磨损性能。结果表明:激光功率分别为1.2 kW和1.6kW时成形的试件没有裂纹,物相组成不受激光功率和扫描速率的影响,主要由WC、Co和W_2C相组成,但1.2 kW的激光功率会产生气孔等缺陷,导致成形试件硬度低于1.6 kW。又由于同一激光功率下受到扫描速率的影响,使参数为1.6 kW下10 mm·s~(-1)的扫描速率的试件组织和性能最优,硬度最高达到1698 HV,摩擦系数为0.73。  相似文献   

3.
对热喷涂WC-Co陶瓷涂层材料进行了宽带激光重熔试验,分析了熔覆层组织和物相组成,测试了熔覆层的硬度分布和摩擦磨损性能,分析了工艺参数对涂层物相,硬度的影响.结果表明,重熔后的熔覆层主要由WC、C、Cw,、Co6W6C、CCo2W4等构成.在重熔的过程中,WC有不同程度的分解,功率越大,WC分解越严重.适当控制激光功率至关重要.较大的扫描速度对提高熔覆层的硬度有一定的作用.热喷涂的WC-Co陶瓷涂层材料经宽带激光重熔能够得到结合良好的激光重熔层,基体与结合强度增强,孔隙率明显减少,涂层的致密程度和硬度提高,同时,耐磨性能也得到增强.磨损试验表明在干滑动摩擦下,WC-Co涂层的主要磨损机制为WC颗粒的磨粒磨损.  相似文献   

4.
王永东  宫书林  汤明日  宋闽 《焊接学报》2023,(8):116-122+136
为了探究激光熔覆工艺对高熵合金组织和性能的影响,使用激光熔覆技术在Q235基材表面制备不同熔覆工艺下的高熵合金涂层.利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪等对高熵合金涂层进行显微组织形貌的观察及物相分析;利用显微硬度计、摩擦磨损试验机对涂层的硬度及耐磨性进行研究.结果表明,宏观形貌上,扫描速度一定时,激光功率增大,涂层宽度增加,涂层表面更加平整;激光功率一定时,扫描速度增加,熔覆层的宽度减小,相结构主要由体心立方(BCC)和面心立方(FCC)组成,扫描速度的增大或激光功率的降低,涂层中的晶粒变细小,且部分区域的胞状晶有向树枝晶生长的趋势,涂层硬度明显高于基材,最高可以达到553 HV,耐磨性要优于基体.  相似文献   

5.
在TC4钛合金表面利用激光熔覆Co基合金粉末涂层,利用扫描电镜(SEM)、能谱分析仪(EDS)和洛氏硬度计研究涂层的微观组织及力学性能。结果表明:当扫描速度固定为400 mm/s,激光功率为1.3、1.5、1.7 k W熔覆时,涂层与基体之间都实现了冶金结合。其中,激光功率为1.5 k W时熔覆效果最好,熔覆层内组织均匀致密无气孔和裂纹等缺陷。激光功率为1.3 k W时,熔覆层内出现了裂纹。当激光功率固定为1.5 k W,扫描速度为300、350、400 mm/s时,熔覆层和基体的结合情况良好,熔覆层内组织均匀致密无缺陷。随着激光功率和扫描速度的增大,涂层表面硬度呈减小的趋势,但都高于TC4基体硬度的两倍左右,表明在TC4表面激光熔覆Co基合金粉末涂层可以显著提高其硬度。  相似文献   

6.
为改善45钢的表面性能,利用YLS-4000型光纤激光器在45钢表面激光熔覆镍基陶瓷复合涂层。采用正交实验,研究激光功率、扫描速度及镍包WC添加量对熔覆层表面形貌、几何参数与稀释率以及显微硬度的影响。结果表明:当试样的激光功率和扫描速度都为最大时(P=2000 W,Vs=16 mm/s),镍包WC质量分数为20%,在试样表面出现了较多的裂纹且熔覆层的表面平整度是所有试样中最差的。激光功率对稀释率的影响最大,扫描速度次之,镍包碳化钨对稀释率的影响最小。稀释率控制在5%左右为宜,且可通过调节工艺参数来控制稀释率的大小。  相似文献   

7.
采用激光熔覆技术在钛合金(Ti-6Al-4V)表面制备了Al_2O_3/TiO_2涂层,研究了添加不同含量WC对熔覆层裂纹和组织性能的影响。利用光学显微镜(OM)、扫描电镜(SEM)、X射线能谱仪(EDAX)、X射线衍射分析仪(XRD)和显微硬度计研究了激光熔覆涂层的显微结构,分析了涂层的裂纹率、成分分布、相组成和显微硬度分布情况。结果表明:当WC含量为0%~20%(质量分数)时,随着WC的增加,涂层表面裂纹明显减少;添加20%WC时,熔覆层表面无裂纹,涂层与基体结合良好;添加30%WC时,熔覆层表面裂纹明显增多,涂层与基体结合区产生较大裂纹,并伴有一些细小的气孔。熔覆层内有许多未熔的Al_2O_3颗粒,同时,随着WC含量的增加,涂层的晶粒越来越细化,组织分布更加均匀,涂层的显微硬度明显增大。  相似文献   

8.
扫描速度对激光熔覆Ni基WC合金涂层组织与性能的影响   总被引:1,自引:0,他引:1  
在45钢表面激光熔覆镍基WC合金涂层,分析扫描速度对熔覆层的成型、组织和性能的影响。采用金相显微镜、扫描电镜、显微硬度仪和摩擦磨损试验机对熔覆层的显微组织、化学成分、相组成以及耐磨耐蚀性进行分析测试。结果表明,熔覆层组织致密,与基体有良好的冶金结合。扫描速度增大,熔覆层出现裂纹的倾向增大,底部柱状晶外延生长层宽度减小,组织晶粒细化,相组成种类几乎没有变化,显微硬度增大,耐磨耐蚀性提高。当扫描速度为200 mm/min时得到成型性及耐磨耐蚀性优良的熔覆层。  相似文献   

9.
目的利用激光强化技术在M2(W_6Mo_5Cr_4V_2)高速钢刀具表面熔覆WC/Co涂层,研究涂层组织成分、切削性能的变化规律及强化机理。方法采用IPG光纤激光器,在通用M2高速钢刀具表面制备一组单道熔覆层,运用显微硬度计、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等表征手段分析了熔覆层显微硬度、宏观形貌、显微组织、物相组成及红硬性等情况。结果在激光功率为1.1 kW,送粉电压为14 V,扫描速度为3 mm/s时,熔覆层截面出现少量气孔,并在左右边界部位出现裂纹,主要物相为Fe_3W_3C、WC、W_2C、M_6C型硬质相和间隙碳化物。其上部组织更为细腻,以碳化钨和钨钴化合物为主;中部及下部组织以弥散形式分布于熔覆层中,主要组织为Fe_3W_3C和碳化钨。熔覆层硬度明显高于基体,最高硬度达到1411HV,出现在距熔覆层顶点0.4 mm左右的次表层范围内。600℃时,熔覆层红硬性达到60HRC以上;1000℃时,熔覆层红硬性仍达到50HRC以上。由600℃逐渐升高到1000℃时,熔覆层组织晶界强化作用逐渐减小,择优取向强化表现明显。结论在M2高速钢表面熔覆WC/Co涂层,可以有效地提高刀具材料的硬度及红硬性。熔覆层最高硬度可以提高为刀具基体的1.64倍;600℃时,熔覆层红硬性远高于高速钢基材的红硬性指标;1000℃时,熔覆层红硬性近似接近于硬质合金的红硬性要求,是高速钢基材的2.94倍。生成的碳化物硬质相及间隙碳化物对熔覆层的硬度及红硬性的提高起到了主要作用。  相似文献   

10.
采用Ti和B的混合粉末在Ti-6Al-4V基体表面激光熔覆制备TiB/Ti复合涂层。通过XRD物相分析、形貌观察和硬度测试等方法研究了激光扫描速度2 mm/s时不同激光扫描功率下原位合成的TiB/Ti复合涂层的相结构、显微结构和硬度。不同功率下制备的涂层中只有α-Ti和TiB相;扫描功率为3000 W和3500 W下激光熔覆层与基体结合较好;随着激光扫描功率的增加,熔覆层的平均硬度提高;扫描功率为3000 W下制备的涂层硬度分布较均匀,其硬度值较基体提高了2~3倍,平均硬度值约为1000 HV。  相似文献   

11.
在激光功率为700、900、1100 W时,利用同步送粉激光熔覆技术,在TC4钛合金表面制备了TC4+Ni45+WC+Ce O_2多道搭接激光熔覆层。利用X射线衍射仪(XRD)、扫描电镜(SEM)分析了涂层的组织和相组成,利用显微硬度计测试了熔覆层的显微硬度。结果表明,在不同激光功率下,熔覆层生成的相相同,主要包括Ti C、Ti B、金属间化合物Ti_2Ni、W单质和基底α-Ti。随着激光功率的提高,熔覆层析出相的尺寸减小、数量减少、密度降低。当激光功率为1100W时,热影响区厚度加深,熔覆层基底出现烧损现象。随着激光功率的增加,熔覆层的显微硬度逐步降低,显微硬度开始衰减的位置与其上表面距离逐步增加。  相似文献   

12.
为修复受损轧辊、提高轧辊使用寿命,利用超高速激光熔覆技术,在9Cr2Mo钢表面熔覆成形M2高速钢制备的涂层。为提高熔覆层质量,设计正交试验与对比试验,并借助光学显微镜、扫描电子显微镜、显微硬度计,对不同扫描速度、激光功率、道次间距条件下熔覆层的宏观形貌、微观组织、显微硬度进行研究分析。结果表明,扫描速度对宏观平整度影响最大,提高扫描速度、降低激光功率、增大道次间距可提高涂层平整度;确定最优工艺参数为:激光功率1.5 kW,扫描速度35 m/min,道次间距0.30 mm的组合和激光功率1.7 kW,扫描速度35 m/min,道次间距0.35 mm的组合;熔覆层组织细小、成分均匀,主要为等轴晶,晶粒边界出现网状碳化物;熔合线处晶粒尺寸较为细小,熔覆道中部组织相对较大,道次间熔合线下方组织粗化明显;制备的M2涂层显微硬度整体高于基体,且具有较好的耐磨性。  相似文献   

13.
目的研究U71Mn钢表面激光熔覆Ni60-25%WC涂层的最佳工艺参数。方法首先通过单道单因素试验初步选取激光功率、送粉量、扫描速度和光斑直径4个工艺参数,然后进行4因素3水平的单道正交试验,以熔覆层的宽度、高度和稀释率作为判断熔覆层质量的指标,做极差分析,最后得到最优工艺参数并分析了熔覆层的显微硬度及显微组织。结果单道单因素试验及单道正交试验得到的工艺参数均为:激光功率1500 W,送粉量4 g/min,扫描速度6 mm/s,光斑直径2.2 mm。通过单道正交试验极差表分析发现,工艺参数对质量指标的影响程度不同,对熔覆层宽度的影响为扫描速度送粉量激光功率光斑直径,对熔覆层高度的影响为送粉量扫描速度光斑直径激光功率,对熔覆层稀释率的影响为送粉量光斑直径扫描速度激光功率,对比发现送粉量是熔覆层的最大影响因子。熔覆层的显微硬度最高可达到1170HV,是基体的3.7倍。结论在U71Mn钢表面激光熔覆Ni60-25%WC涂层,可以制备出光滑且紧密结合的熔覆层,且表面硬度明显提高。  相似文献   

14.
游润娟  欧阳八生 《热加工工艺》2012,41(2):113-115,118
在304不锈钢外圆表面激光熔覆镍基氧化锆金属陶瓷粉末,对激光工艺参数优化,制备工艺性能良好的熔覆层。研究了激光工艺参数对熔覆层宏观形貌、显微组织和硬度分布的影响。结果表明:激光功率为1.5 kW时,涂层硬度最佳;随着扫描速度的增大,熔覆层的组织有细化的趋势;通过优化扫描速度,可得到显微硬度较高,且沿熔覆层表面垂直方向的硬度分布变化不大的熔覆涂层。  相似文献   

15.
利用6kW光纤激光器在Q235钢板表面激光熔覆Ni基WC复合涂层。使用光学显微镜、扫描电子显微镜、能谱仪、显微硬度计,研究了不同激光功率下熔覆层组织形态、成分和显微硬度的变化规律。结果表明:WC部分发生溶解并与其他元素相互作用形成共晶物,析出后以块状、条状、粒状等形态存在;随着激光功率的增加,熔覆层的高度、熔深和稀释率逐渐增加,熔覆层平均硬度先增加后减小,当激光功率为2500W时能够获得最高硬度,可达基体硬度的5倍左右。  相似文献   

16.
利用6 kW光纤激光器在Q235钢板表面激光熔覆Ni基WC复合涂层。使用光学显微镜、扫描电子显微镜、能谱仪、显微硬度计,研究了不同激光功率下熔覆层组织形态、成分和显微硬度的变化规律。结果表明:WC部分发生溶解并与其他元素相互作用形成共晶物,析出后以块状、条状、粒状等形态存在;随着激光功率的增大,熔覆层的高度、熔深和稀释率逐渐增加,熔覆层平均硬度先增大后减小,当激光功率为2500 W时能够获得最高硬度,可达基体硬度的5倍左右。  相似文献   

17.
采用半导体激光器,使用预置粉末的方式在Q235钢表面制备了Ni基WC复合涂层。使用扫描电镜、金相显微镜、显微硬度仪等分析了激光功率对熔覆层的宏观形貌、显微组织和性能的影响。结果表明:随着激光功率的提高,熔覆层的宽度、堆积高度和基底熔深均增大;熔覆过程中WC颗粒与Ni基合金之间发生了原子间的扩散,形成了冶金结合,生成了大量的富W、富Cr的碳化物硬质相,使涂层的硬度得到了很大的提高;随着功率的增大熔覆层的组织变的更加细小致密,形成大量的呈集群生长的树枝晶;熔覆层的显微硬度是基体的3~5倍。  相似文献   

18.
利用激光熔覆技术在Inconel718基体上制备了CoNiCrAlY涂层。在相同扫描速度7mm/s、光斑直径4mm下,研究了激光功率对CoNiCrAlY熔覆涂层宏观形貌、截面组织以及显微硬度的影响。结果表明,熔覆层的宏观形貌在激光功率为2200W时质量最优,熔覆层表面连续且平整,波浪起伏较小。随着激光功率的增加,激光能量增加,熔覆层的几何尺寸增大。当激光功率为1400W时,气体未完全逸出熔池就冷却凝固,涂层顶部出现气泡、孔隙等缺陷;当激光功率为2200W时,不再出现明显的气泡和孔隙。随着激光功率的增加,熔覆材料吸收的能量越来越多,导致晶粒长大,熔覆层呈现柱状晶高度越来越大,树枝晶越来越多而胞状晶越来越少的组织形态。当激光功率为1800W时,熔覆层整体形貌和组织的质量最好,熔覆层与基体结合紧密,没有气泡或孔隙,形成了性能良好的冶金结合,平均显微硬度最高。  相似文献   

19.
《铸造技术》2016,(12):2591-2593
采用激光熔覆技术在汽车用镁合金表面制备Al-Si合金涂层,对Al-Si合金涂层的组织和性能进行研究。结果表明,Al-Si合金熔覆层组织主要为树枝晶,主要物相为Mg_2Al_3、Mg_(17)Al_(12)、Mg_2Si。镁合金激光表面熔覆Al-Si合金涂层硬度分为4个不同区域,分别为熔覆层、结合区、热影响区和镁基体,其中次表层硬度最高,基体层硬度最低。镁合金表面随着激光功率的增加,熔覆层耐磨性和耐腐蚀性能提高。随着激光功率的增加,耐磨性先增加后降低,耐蚀性逐渐提高。  相似文献   

20.
王超  姜芙林  杨发展  梁鹏 《表面技术》2024,53(11):181-192
目的 改善旋耕刀65Mn钢的摩擦磨损性能,提高农机触土零部件的使用寿命。方法 采用激光熔覆技术在65Mn钢基体表面制备Ni60A/WC复合涂层。通过改变激光功率调节激光能量密度,在不同能量密度下制备Ni60A/WC复合涂层,观察并测试不同参数下复合涂层试样的宏观形貌、微观结构、物相组成、元素分布、显微硬度及摩擦磨损特性,研究激光能量密度对Ni60A/WC复合涂层组织演变及摩擦磨损性能的影响规律和机理。结果 Ni60A/WC复合熔覆层顶部主要有胞状晶和树枝晶,分布较紧密,熔覆层中部主要有树枝状晶,熔覆层底部主要为胞状晶和垂直交界面生长的枝晶,且分布均匀致密。随着激光能量密度的升高,熔覆层的熔高和熔深增加显著,WC硬质相颗粒发生分解,硬质相的数量明显减少,涂层的平均显微硬度降低。在激光能量密度为120 J/mm2时,熔覆层的平均显微硬度为587.1HV1.0,相较于基体,提升了约1.8倍。此时熔覆层的平均摩擦因数最小,为0.312,相较于基体,得到显著提升,摩擦磨损机制为轻微的磨粒磨损。经田间试验测试发现,在激光能量密度为120 J/mm2时制备的带有熔覆层的旋耕刀相较于无熔覆层的旋耕刀,其磨损质量降低了63%。结论 通过控制激光能量密度,可以有效调控Ni60A/WC熔覆层的硬度和耐磨性,可为农机触土易磨损件的减摩耐磨表面强化改性提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号