首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在煤油中采用TOPS-99和Cyanex 272钠盐从镍红土矿细菌浸出液中提取与分离锌、锰、钴和镍。采用沉淀法去除不需要的金属离子,使用溶剂萃取提取/分离锌、锰、钴和镍。生物浸出铬铁矿表土样品得到的镍红土矿浸出液中含有3.72 g/L Fe,2.08 g/L Al,0.44 g/L Ni,0.02 g/L Co,0.13 g/L Mn,0.14 g/L Zn和0.22 g/L Cr。在p H 4时采用CaCO_3沉积去除100% Fe,96.98%Al和70.42%Cr,随后在pH 5.4时采用50%氨沉积,溶液中剩有Al和Cr。沉积后,采用0.1 mol/L TOPS-99从无铁、铝和铬的浸出液中提取锌,随后采用0.04 mol/L Na TOPS-99提取锰。锌和锰的产率分别是97.77%和95.63%。提取锰后,再采用0.0125 mol/L Na Cyanex 272从浸取液去除钴,最后采用0.12 mol/L NaTOPS-99提取镍,其产率达99.84%。采用稀硫酸去除浸出液中的有机相。  相似文献   

2.
以红土镍矿为研究对象,重点考察添加Na2CO3对红土镍矿的H2还原影响规律。对还原焙烧矿物采用X射线衍射(XRD)、扫描电子显微镜(SEM)和热重-质谱联用(TG-MS)等技术进行表征。结果表明:在还原温度为1000℃,还原时间为90 min,H2浓度为45%(体积分数),Na2CO3的添加量为15%(质量分数)时,可得镍品位为3.02%、镍回收率96.75%的精矿。Na2CO3对红土镍矿的修饰作用机理的本质为,Na2CO3中的Na+通过与红土镍矿中的Mg-Si-O以及Ni-Mg-O体系发生反应,取代全部Ni2+以及部分Mg2+,从而破坏硅镍酸盐及硅镁酸盐的结构,进而使赋存于硅酸盐类中的镍元素被释放出来,有利于后续镍的富集提取。  相似文献   

3.
硅胶-聚合胺树脂从模拟低品位铜矿浸出液中富集纯化铜   总被引:1,自引:0,他引:1  
研究SP-C硅胶-聚合胺树脂在模拟低品位铜矿硫酸浸出液中富集纯化铜的工艺,在Cu2 1~2 g/L、Fe3 2~8 g/L范围内,考察该树脂吸附分离铜铁的性能。结果表明:该树脂对铜具有良好的选择性能,对铁的选择性能较差;湿树脂铜的穿漏交换容量及饱和交换容量分别为0.27和0.34 mol/L,解析高峰液Cu2 约30 g/L,铜铁分离系数达到397;最佳工艺条件为:料液pH 1.86,接触时间30 min。  相似文献   

4.
化学镀镍施镀过程稳定性分析   总被引:10,自引:10,他引:0  
以化学镀镍反应机理为依据,针对一种酸性化学镀镍体系,就主盐浓度(硫酸镍)、还原剂(次磷酸钠)、pH值、温度等因素对施镀过程中镀液稳定性的影响进行了分析。结果表明:在Ni2+质量浓度5.8 g/L、H2PO2-质量浓度17.4 g/L、pH值4.4、温度82℃的条件下施镀,化学镀镍施镀过程稳定性最佳。  相似文献   

5.
乔永莲 《表面技术》2015,44(11):128-133
目的研发一种能够在线监测镀镍槽液中镍离子含量的测试系统,并将此方法推广至镀铬、镉、铜等槽液。方法利用计算机VC++语言编程技术、Modbus通讯技术、西门子PLC技术组成监控系统,通过耐酸碱计量泵和耐酸碱流量计对镀镍槽液取液量进行控制和校正,采用电化学测试方法对待测槽液在线监测,采用VC++语言编程技术采集电化学测试数据,最终实现对镀镍槽液中镍离子含量的自动监测。结果采用此自动控制系统测量镀镍槽液中镍离子的质量浓度,其与极化曲线中-1.0 V(vs.SCE)电位下的极化电流之间的线性拟合方程为:I=0.002 01+6.90×10-5ρ。以120 g/L待测溶液为分析对象,采用此自动检测系统测得镀镍液中Ni2+质量浓度为115.5 g/L,而采用EDTA直接滴定分析测得Ni2+质量浓度为113.7 g/L,测量误差分别为3.78%和5.25%。结论该镀镍槽液中镍离子含量的在线监测方法可靠性高,除了对镀镍槽液状态进行监控分析外,还能对镀铬槽液、镀镉槽液等进行监控分析,可适应较恶劣的生产环境。  相似文献   

6.
某印尼低品位红土镍矿的微观结构及晶体化学(英文)   总被引:3,自引:0,他引:3  
为深入研究红土镍矿的镍富集原理,利用电子显微镜、扫描电镜、X射线衍射分析以及电子探针微区分析对含镍0.97%的某印尼低品位红土镍矿的工艺矿物学进行研究,以了解镍钴有价金属的分布及赋存状态。实验表明:该矿样主要矿物为针铁矿(含量约为80%),镍含量约为0.87%;含镍、铁、镁的结晶水硅酸盐矿物((Mg,Fe,Ni)2SiO4)的含量约为15%,如利蛇纹石((Fe,Ni,Al)O(OH))和橄榄石((Mg,Fe,Ni)3Si2O5(OH))等,镍含量约在1.19%左右;其它含量较低的物相为赤铁矿、磁赤铁矿、铬铁矿和石英等,这些矿物的镍含量极低。钴土矿是含钴矿物,分析发现该矿物往往有较高的镍和钴含量。微观检测发现:红土镍矿微观结构复杂,不同矿物之间共生普遍,主要矿物的微观结构松散,因而传统选矿方式很难实现镍的富集。  相似文献   

7.
利用Cu2+印迹凹土/壳聚糖复合材料(Cu2+ions-imprinted attapulgite/chitosan composite materials,Cu2+-IICA)富集和纯化低品位铜矿中的铜,将低品位铜矿粉碎后用1 moL/L盐酸搅拌浸泡24 h,浸出液中铜用Cu2+-IICA进行分离和纯化,采用单因素实验设计法优化筛选Cu2+-IICA纯化铜的最佳静态吸附-解析和动态吸附-解析工艺条件。结果表明,Cu2+-IICA纯化铜的静态吸附-解析最佳条件为Cu2+的初始浓度20.00 mg/mL、吸附温度25℃、pH值5.0,解析液6%HNO3(质量分数)溶液;动态吸附-解析最佳条件为上样液流速40.0 mL/h、上样液体积60.0mL、解析剂用量150 mL、解析剂流速60.0 mL/h。在最优条件下Cu2+-IICA对铜具有良好的选择性和吸附性能,矿石经Cu2+-IICA分离纯化后,铜含量由纯化前的8.06%增大到纯化后的92.78%,提高了11.5倍。  相似文献   

8.
为得到硫酸镍溶液除铁的合适工艺条件,以硫酸铵焙烧红土镍矿的熟料溶出液为原料,采用 NH4HCO3合成黄铵铁矾。考查了反应温度、反应时间、反应终点pH以及Fe3+初始浓度对除铁率的影响。以上因素均对Fe3+的去除率有显著影响,其中反应温度的影响最为显著。合适的反应条件为:Fe3+初始浓度19.36 g/L、反应温度95℃、反应时间3.5 h、反应终点pH2.5。在此条件下所得到的黄铵铁矾为包含片状或棱形颗粒的花簇结构。  相似文献   

9.
硫化镍矿中常伴有铜,在浸出时镍和铜往往同步进入浸出液,但由于铜镍化学性质相近而难以分离。针对这一难题,采用阴离子膜电解,通过控制槽电压,分离溶液中的铜镍,考察极距、电解液温度、槽电压、铜镍浓度等因素对铜镍分离效果的影响。结果表明:当溶液中Cu~(2+)25 g/L、Ni~(2+)37.5 g/L时,在极距4 cm、电解液温度40℃、槽电压0.53 V、电解10 h的条件下,阴极液中残余总铜浓度可降到0.24 g/L,ΡNi/Cu比为155.7,铜镍分离效果良好。  相似文献   

10.
双极膜电去离子技术处理模拟低浓度含镍废水   总被引:1,自引:0,他引:1  
采用双极膜电去离子技术(EDI-BP)处理低浓度模拟含镍废水,研究了Ni(OH)2沉淀产生的原因及消除措施。结果表明:沿膜器高度的电流密度分布不均匀;浓水室靠近产水出水端阴膜面产生的Ni(OH)2沉淀由于局部Ni2+、OH-离子浓度过高造成。第一脱盐室进水端阳膜面产生的Ni(OH)2沉淀由水解离造成。采用降低原水pH、浓水pH等措施能够有效地避免沉淀的产生;在原水Ni2+浓度30 mg/L、流速0.317 cm/s、pH值2.77,浓水pH 1.18和电流密度9.5 mA/cm2的条件下进行浓缩试验,试验稳定运行285 h,得到的产水电导率约为1.5μS/cm,产水中未检测出Ni2+离子,浓水中Ni2+浓度可达2.7 g/L,浓缩倍数达90倍。  相似文献   

11.
过渡层红土镍矿中的镁质矿中和沉矾浸出   总被引:1,自引:0,他引:1  
采用沉矾浸出法将铁质矿浸出液对镁质矿进行沉矾浸出。结果表明:镁质矿酸浸过程中,在镁质矿粒度为106~150μm、搅拌强度为150 r/min、终点pHe值为1.3、温度为95℃的条件下,浸出镁质矿3 h,镍、镁、铁的浸出率分别为93.34%、78.28%、26.4%;在沉矾浸出过程中,在反应温度为95℃、搅拌强度为150 r/min、硫酸钠中的钠与形成黄钠铁矾中的钠的摩尔比x为1.3、镁质矿粒度为106~150μm、反应终点pHe为1.3±0.2的条件下,沉矾浸出5 h,镍浸出率能达到92%,镁浸出率在74%以上,铁质矿浸出液除铁率达到87%以上,铁质矿浸出液中铁的浓度在15.87~42.16 g/L的范围内,对镁质矿的镍、镁浸出及铁质矿浸出液中Fe的浓度没有显著的不利影响,溶液中铁基本上控制在4 g/L以下。  相似文献   

12.
低品位红土镍矿深度还原机理   总被引:3,自引:0,他引:3  
采用扫描电子显微镜和EDS能谱研究低品位红土镍矿深度还原过程中金属颗粒的生长行为,并在此基础上分析其还原机理。结果表明,金属铁和镍逐渐聚集生长为Fe—Ni颗粒,并且颗粒粒度随着还原温度的升高和还原时间的延长而明显增大。还原后,红土镍矿明显变为Fe—Ni金属颗粒和渣相基体两部分。铁镁橄榄石的还原与其晶体化学特性密切相关。铁和镍的氧化物被还原剂还原为金属铁和镍,同时,橄榄石的晶格结构被破坏。红土镍矿深度还原包含金属氧化物还原和金属相生长两个过程。  相似文献   

13.
相转变过程对红土镍矿氯化离析的影响   总被引:1,自引:0,他引:1  
在氯化剂CaCl2·2H2O的加入量为原矿质量的8%(以氯计)、还原剂焦炭加入量为原矿质量的6%及升温速率为5℃/min的条件下,对菲律宾红土镍矿进行氯化离析;采用TG-DTA和XRD研究菲律宾红土镍矿氯化离析升温至1 000℃及冷却过程中的物相转变.结果表明:红土镍矿中的氧化亚铁在700℃开始进入蛇纹石中,形成富铁橄榄石相,破坏蛇纹石的晶格结构,提高镍的活性,有利于镍的氯化和离析;而氯化剂所释放的氯成为铁迁移的媒介;冷却过程中物相没有发生明显变化.当生料中Fe3O4的加入量为原矿的10%(质量分数)时,精矿中镍的品位达到13.14%,回收率达到80.12%,比未加Fe3O4时的回收率提高了约10%.  相似文献   

14.
将斛壳丹宁酸与甲醛聚合来形成的凝胶作为吸附剂能有效地移去水溶液中的银离子。研究了不同银离子初始浓度、溶液温度、pH值条件下斛壳丹宁酸树脂的附和解吸行为。研究了有关经验动力学模型的适应性。伪二级动力学模型表明银离子的吸附是很快的。用FTIR和SEM对吸附和解吸银离子后的斛壳彤宁酸和斛壳丹宁酸树脂进行表征。银离子在斛壳宁酸树脂上的吸附随着银离子初始浓度的增加而增加,随着溶液温度的升高而减少。在低pH值的H2SO4、HNO3和HCl溶液中进行解吸实验。斛壳丹宁酸树脂在pH2.0~7.0溶液中对银离子表现出高的吸附容量,在银离子初始浓度100.0mg/L、温度296K和pH5.0的条件下达到最大的吸附量97.08mg/g。在1mol/LHCl+1%硫脲溶液中银离子的脱吸率达99.6%。  相似文献   

15.
本文通过热力学分析,揭示了红土镍矿硫化熔炼低镍锍过程物相演变规律,阐明了硫化熔炼过程机理。结果表明:在一定硫化熔炼条件下,红土镍矿中镍氧化物转变历程为NiO→Ni→Ni_(3)S_(2),钴氧化物转变历程为CoO→Co→Co_(9)S_(8),铁氧化物转变途径为Fe_(2)O_(3)→Fe_(3)O_(4)→FeO→FeS或Fe_(2)O_(3)→Fe_(3)O_(4)→FeO→Fe→FeS;金属与S亲和力强弱顺序为Ni≈Fe>Co;金属与O亲和力强弱顺序为Fe>Co>Ni。由理论计算可知:在硫化熔炼过程中,当硫磺添加量为矿料质量的2%、碳添加量为矿料质量的4%时,产出镍锍品位为21.45%,镍、钴回收率分别为99.43%、87.58%,硫直接利用率为62.68%。目前,红土镍矿高温硫化熔炼镍锍,已初步实现工业应用,与常规RKEF技术相比,过程绿色低碳,是具有里程碑意义的技术变革。  相似文献   

16.
由于镍电解液中铜浓度低(0.53 g/L)、镍浓度高(75 g/L),因此,很难从镍电解液中分离除去铜。采用硫化锰(MnS)除去镍电解液中的铜。结果表明:在MnS用量为理论量D_(t,MnS)(D_(t,MnS)=0.74 g)的1.4倍、pH值为4~5、温度高于60℃时反应至少60 min后,电解液中铜浓度ρ(Cu)从530 mg/L降低至3 mg/L,渣中铜、镍质量比R_(Cu/Ni)达到15以上。采用氧化法可将新产生的除铜后液中锰浓度ρ(Mn)降低至3 mg/L。除铜后液中铜、锰浓度,渣中铜、镍质量比均能满足生产要求。因此,硫化锰是一种高效除铜剂。  相似文献   

17.
利用碳还原-磁选工艺回收低品位红土镍矿中的铁和镍。在对矿物成分、物相分析的基础之上,考察还原反应温度、配碳比(C/O)、助熔剂的添加量(Ca O%)和还原时间等因素对Fe、Ni回收的影响,结果表明,还原反应温度1 375℃、配碳比(C/O)0.8、助熔剂的添加量(Ca O%)12%、还原时间300 min的条件下,低品位红土镍矿中镍和铁的回收率分别为99.47%和97.54%,同时尾矿中Ni、Cr含量低于0.04%。  相似文献   

18.
王明双  荀维超 《贵金属》2022,43(2):47-50
研究了717阴离子交换树脂吸附高盐度废水中金的性能,考察了p H、吸附时间及树脂用量对树脂吸附金的影响。结果表明,pH值对吸附率影响较大,p H=2时,经60 min吸附,1.0 g树脂对100 mL金浓度为10.6 mg/L高盐废液中金的吸附率达95%以上;树脂对金的静态饱和吸附量为241 mg/g;吸附反应符合准二级反应动力学模型,升高温度对金的吸附有利,表观活化能Ea=21.3kJ/mol。  相似文献   

19.
以红土镍矿常压酸浸净化液为原料,采用阴离子交换膜与电解结合的方法制备金属镍。分别研究电解液成分、温度、时间、电流密度和p H等因素对阴极电流效率、回收率、能耗以及槽电压的影响。结果表明:含Ni2+溶液浓度为64 g/L、H3BO4浓度为40 g/L、H2SO4浓度为0.1 mol/L、温度为40℃、电流密度为300 A/m2、p H为5.2时,阴极电流效率达到98.47%,能耗为3470 k W·h/t,得到的金属镍纯度达到99.9%以上,能够满足工业上的要求。  相似文献   

20.
根据质量守恒和同时平衡原理,以Me(Co、Ni、Fe、Mn)为金属元素,建立Me-OH-、Me-OH--CO32-、Me-OH--S2-、Me-OH--NH3和Me-OH--NH3-CO32-等多个配合-沉淀体系的热力学平衡模型。结果表明:Fe3+可以在Me-OH-、Me-OH--NH3体系中通过调节pH=3预先沉淀分离,而Co、Ni、Mn仅在Me-OH--NH3-CO32-体系中有分离效果。Me-OH--NH3-CO32-体系热力学计算表明:Co、Ni、Mn在溶液中的行为受pH值、配合剂、沉淀剂浓度共同影响,碳酸根初始总浓度[C]增大和氨初始总浓度[N]减小有利于Co、Ni、Mn形成沉淀。当[C]=1 mol/L、[N]=2 mol/L、pH值为9~10时,大部分Ni以高级氨配离子[Ni(NH3)42+]、[Ni(NH3)52+]、[Ni(NH3)62+]的形式保留在溶液中,而Co、Mn以MnCO3、CoCO3的形式沉淀出来。Co可在Me-OH--S2-体系中通过调节pH<6从溶液中与Mn分离。研究结果可为钴镍二次资源综合回收钴镍、制备钴镍产品提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号