首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以多向锻造AZ31镁合金为板坯进行高应变速率轧制成形,研究轧制温度对板材组织与力学性能的影响。结果表明:镁合金高应变速率轧制成形前期,孪生作用增强,形成大量的■拉伸孪生和■二次孪生;变形后期,由于孪生诱发动态再结晶的作用,合金晶粒组织明显细化。在压下量为80%的高应变速率轧制下,轧制温度为250~400℃时,轧制板材组织均发生了完全再结晶,平均晶粒尺寸随着轧制温度的升高从6.97μm增加至8.13μm,但由于轧制板坯的初始晶粒尺寸较小,晶粒尺寸随着轧制温度的升高变化较小;轧制板材的抗拉强度和伸长率均高于315 MPa和25%,表明高应变速率轧制工艺可以在较宽的温度区间内制备力学性能稳定的镁合金板材。  相似文献   

2.
采用透射电镜观察(TEM)、电子背散射成像技术(EBSD)和X射线衍射技术对比分析喷射成形Al-9.8Mg-1.5Li-0.4Mn合金交叉轧制态板材与挤压态板材的显微组织及织构特征,并测试板材的拉伸性能和深冲性能。结果表明:大压下量交叉轧制能促进动态再结晶的发生、细化晶粒组织以及改善再结晶晶粒的择优取向;与CBA和CCB轧制方式相比,CBB轧制方式显著降低了挤压态合金中典型Brass织构{110}112的取向密度,在β取向线上CBB轧制态板材中Copper织构{112}111和Brass织构{110}112的取向密度均最低,且板材中没有典型的织构特征;同时,CBB轧制态合金板材具有更好的深冲性能,在0°、45°和90°三个方向的力学性能基本一致,其室温拉伸强度、屈服强度和伸长率分别为617 MPa、523 MPa和大于20.1%,各方向力学性能偏差小于3%。  相似文献   

3.
采用金相显微镜(OM)、透射电镜(TEM)、电子背散射成像技术(EBSD)和X射线,对比分析喷射成形Al-9Mg-1.8Li合金交叉轧制态板材与挤压态板材的微结构及织构特征,并测试板材的拉伸性能和深冲性能。结果表明:大变形量交叉轧制促进动态再结晶的发生,细化晶粒组织,改善再结晶晶粒的择优取向;与CBA和CCB轧制方式相比较,CBB轧制方式显著降低挤压态合金中典型的Brass织构{110}?112?的取向密度,在β取向线上CBB轧制态板材中的Copper织构{112}?111?取向密度最低,且板材中没有典型的织构特征;同时,CBB轧制态合金板材的具有更好的深冲性能,在0°、45°和90°方向的力学性能基本一致,其室温拉伸强度、屈服强度和伸长率分别在611 MPa、507 MPa和20.6%以上。  相似文献   

4.
采用大应变轧制技术制备AZ31合金板材,研究了轧制温度对板材显微组织、宏观织构和力学性能旳影响。结果表明,轧制温度为200℃时,板材发生开裂,轧制温度升高至250~400℃时,大应变轧制可以成功进行;在250~400℃的轧制温度范围内,板材再结晶晶粒尺寸和基面织构强度随轧制温度的升高而增大,其力学性能则随轧制温度的升高而下降;轧制温度为250℃时,板材具有良好的综合力学性能,其抗拉强度、屈服强度和伸长率分别为325.7 MPa、213.2 MPa和29.8%。  相似文献   

5.
本工作系统研究多晶纯锡(99.99%)在不同轧制工艺下的显微组织演变和力学行为,阐明纯锡在不同轧制状态下晶粒细化规律,以期为调控与优化纯锡的强韧化奠定理论基础。研究结果表明,不同轧制工艺对纯锡的微观组织和力学性能影响明显,其中轧制速度是影响纯锡的晶粒细化和力学性能提升的最主要因素,温度、速度和路径通过调控变形过程中的孪晶激发以及孪晶诱导再结晶的进程而实现不同工艺下的晶粒细化。轧制过程晶粒细化机制为:变形初期诱发60°<100>形变孪晶,在后续变形过程中孪晶逐渐演变为再结晶条带状组织,分割细化晶粒,且孪晶和再结晶组织的随机取向弱化原始粗晶产生的集中织构。轧制变形能明显提高纯锡的强度,且单向轧制工艺下的纯锡样品的TD方向的屈服强度和抗拉强度明显高于RD方向。  相似文献   

6.
利用光学显微镜、扫描电镜、万能实验机研究了Mg-3Al-1Zn-xLi(x=0、2、4、6)合金轧制板材的微观组织及力学性能。结果表明,添加Li元素后,可促进动态再结晶的进行,细化晶粒,同时合金的力学性能得到显著提高。当Li元素含量为4%时,合金的晶粒多数为细小的动态再结晶晶粒,合金的各项力学性能达到最佳,抗拉强度达到302 MPa,伸长率达到12.6%。当Li元素含量达到6%后,晶粒变得粗大,合金板材的强度指标明显下降。  相似文献   

7.
采用显微组织分析、硬度测试、拉伸测试等手段,研究了轧制工艺对AZ31镁合金组织和力学性能的影响。结果表明:合金铸态组织有严重偏析现象,经大应变热轧后其偏析现象得到改善,组织中出现大量再结晶晶粒和较少孪晶组织。合金在300℃下轧制时,其抗拉强度达到最大为328.33 MPa;而在350℃轧制时,其伸长率达到最大为9.33%。大应变轧制变形使得板材的晶粒得到明显细化,成形板材质量良好。  相似文献   

8.
轧制工艺对Mg-10Gd-4.8Y-0.6Zr合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
Mg-10Gd-4.8Y-0.6Zr铸态合金经525℃、16 h均匀化退火后,在500℃轧制成总变形量为84%的板材,轧制后在200℃进行时效处理。观察合金的微观组织变化,并测试合金的力学性能。结果表明:轧制变形明显细化了晶粒尺寸,轧制后组织中存在方块相和长条状相;轧制初期组织中存在大量孪晶,孪晶能很好地协调塑性变形,并诱发了孪生动态再结晶;随着轧制变形量的增大,孪晶数量减少,再结晶方式以晶界弓出形核为主。轧制T5态合金具有优异的高温力学性能,200、250、300和350℃时抗拉强度分别为392、381、251和112 MPa,350℃拉伸时伸长率达到107.0%。  相似文献   

9.
利用光学显微镜、扫描电子显微镜、热压缩试验以及拉伸实验研究Ca、Sr元素单一添加以及复合添加对铸态和轧制态Mg-5Zn合金显微组织和力学性能的影响。Ca元素在铸态组织中细化晶粒尺寸的作用比Sr元素明显。高应变速率轧制过程中产生大量的变形孪晶,因此提供大量的动态再结晶形核点。高应变速率轧制过程中,Ca、Sr元素会促进动态析出相的析出,而动态析出相的析出会消耗部分储存能,因此提高了动态再结晶的临界应变值,延迟了动态再结晶的产生。轧制态Mg-5Zn-0.4Ca-0.2Sr合金具有良好的综合力学性能,其极限抗拉强度、屈服强度、断后伸长率分别是317 MPa、235 MPa和24%。  相似文献   

10.
通过单道次轧制试验,研究了AZ31B挤压镁合金板材在温度为365℃和450℃时的轧制性能,其变形量范围为10%~60%,应变速率为2.1s-1~5.0s-1。通过光学显微镜和扫描电镜观察了轧制变形中的微观组织及其演变。结果表明,在变形的初始阶段,孪生为主要的变形机理和硬化机制。由孪生变形积聚的畸变能和非基滑移的启动,导致了动态再结晶的形核与长大,增大变形速率可以抑制晶粒长大,使平均晶粒尺寸细化到7μm~10μm。365℃温轧制变形使板材晶粒明显细化,温度较高时,晶粒细化作用有限。在同一变形量下,随着轧制温度的升高,板材的晶粒呈长大趋势,在365℃轧制温度下,随着道次变形量的加大,细晶百分含量随之迅速增加。当轧制温度提高到450℃时,晶粒细化有限,晶粒尺寸保持在20μm以上。  相似文献   

11.
研究了高温轧制、不同压下量(10%~20%)下AZ31镁合金板材的微观组织、织构、力学性能与室温成形性能演变。结果表明,对于轧制态板材而言,不同压下量的板材中孪生仍然是主要变形模式,这主要是由终轧道次压下量相对较小,不足以引起动态再结晶但足以引起孪生导致。与终轧压下量10%的板材相比,20%的轧制板材表现出较大的晶粒尺寸和较弱的基面织构强度。退火后,板材表现出基轴向RD方向偏转±9.6°~±12°的双峰织构特征。与轧制态相比,退火态的基面织构显著弱化,这主要是由于板材在退火过程中的静态再结晶作用。随着终轧压下量由10%增加至20%,退火板材的基面织构显著减弱,使其r值降低、n值增大,从而引起板材室温杯突值由4.3 mm提高为6.3 mm。  相似文献   

12.
对轧制下压方向平行和垂直晶粒c轴的两类板材进行150℃轧制(5%下压量)后,利用背散射电子衍射分析(EBSD)研究了轧制试样中不同类型的孪晶组织对静态再结晶的晶粒形核、微观组织及织构的演变的影响。结果表明:含有大量{1011-}-{1012-}双孪晶的样品中,二次孪生有效促进再结晶形核,显著细化晶粒。再结晶晶粒取向规律性不强,有效削弱基面织构。而含有大量{1012-}拉伸孪晶的样品,拉伸孪晶不能有效促进再结晶形核。退火过程中基体不断长大,当再结晶驱动力足够大时,基体会吞并周围拉伸孪晶,同时诱发织构改变,基体取向的织构逐渐增强,拉伸孪晶取向的织构逐步减弱。  相似文献   

13.
研究了轧制方式对ZK60镁合金组织与织构的影响规律,同时通过对退火后板材进行室温拉伸试验研究了其力学性能。经过交叉轧制的镁合金板材由于二次孪晶的生成及非基面滑移系的启动促使再结晶程度增大,晶粒细化效果显著,退火后平均晶粒尺寸达到6.43μm。同时交叉轧制会迫使晶粒向TD方向旋转,从而降低织构强度,改变织构类型。相比于单向轧制,交叉轧制后板材的平均抗拉强度和伸长率分别提高到321 MPa和25.7%,伸长率提高了近50%;塑性应变比、平面各向异性指数、屈强比等指标也得到了改善。结果表明,交叉轧制可有效调控镁合金板材组织及其均匀性、提高力学性能和成形性能。  相似文献   

14.
采用商用连铸连轧AZ31镁合金板材,通过小辊径非对称轧制工艺,研究在150,200,250℃温度条件下多道次非对称轧制对镁合金板材组织、织构和力学性能的影响。结果表明,不同轧制温度下,镁合金板材的晶粒细化机理不同,150℃时以孪晶细化为主,部分晶粒发生动态再结晶,200和250℃时板材晶粒细化机理为动态再结晶。对比分析了对称轧制和非对称轧制板材织构演化规律,随着轧制温度的升高,非对称轧制板材基面织构依次增强,但明显低于对称轧制板材。  相似文献   

15.
在823 K下对工业用AZ31镁合金板材进行约70%压下量的单道次轧制实验。结果表明,细小的再结晶晶粒不仅分布在轧制板材的剪切带中,同时还存在于板材的表面。剪切带中再结晶晶粒尺寸在0.4~1μm之间。晶粒的显著细化主要来源于流变应力集中过程中所产生的动态再结晶。板材中部的织构为基面织构,织构强度在轧制变形前后未发生明显改变;然而,经过轧制后板材表面织构转变成双峰织构,基面沿板材横向发生倾转。双峰织构的相对强度为26.6,明显高于板材中部织构强度。变形应变的分配差异是板材内部不均匀再结晶及织构差异的主要原因。  相似文献   

16.
采用同步轧制(NR)和异步轧制(AR)工艺对AZ31镁合金挤压板材进行了轧制,研究了轧制过程中组织和织构的演化,以及总压下量和异步比对轧材组织、织构和力学性能的影响。结果表明,在压下量为3%~15%的范围内,同步轧制与异步轧制板材在晶粒尺寸以及均匀性上有相似的变化趋势。轧制过程中,在变形初期,随压下量的增加,孪晶数量不断增加,孪晶使同步轧制与异步轧制板材中晶粒取向都发生偏转,即C轴趋向于垂直于法向(ND),从而使初始挤压板材的丝织构强度减弱;而当压下量达到24%时,孪晶大量减少或消失。在压下量为3%~24%的范围内,同步轧制对板材力学性能的影响并不明显,峰值应变呈交替变化;异步轧制板材在压下量达到24%左右时,表现出了良好的塑性变形能力,抗拉强度达到309MPa,峰值应变达到0.163。  相似文献   

17.
试验研究了异步轧制工艺参数对Mg_(98.5)Zn_(0.5)Y_1合金力学性能的影响,探讨了异步轧制工艺参数对合金晶粒细化及其强化机制的影响。结果表明:随着轧制道次的增加,材料的屈服强度和抗拉强度增加,最高可达到325 MPa;异步轧制产生的剪切应变能有效促进压缩孪晶和晶粒内部及晶粒间的相互作用,产生动态再结晶,从而导致大晶粒的内部转变为许多小亚晶,达到细化晶粒,提高镁合金力学性能的目的。  相似文献   

18.
以固溶态Mg-8Gd-1Er-0.5Zr(质量分数,%)合金为对象,研究了在高应变速率多向锻造过程中合金微观组织及织构的演变规律,并探讨了高应变速率多向锻造对合金力学性能的影响机制.结果表明,变形初期,合金晶粒内部的大部分{101ˉ2}拉伸孪晶被激发,随着累积应变(ΣΔε)的增加,孪晶面积分数降低,再结晶面积分数增高,再结晶机制以连续动态再结晶为主,同时伴有不连续动态再结晶和孪生诱导再结晶.合金晶粒细化分为2个阶段:当ΣΔε<1.32时,为孪晶破碎机制,晶粒尺寸由初始态的33.0μm细化至13.1μm;当ΣΔε≥1.32时,为动态再结晶细化机制,晶粒尺寸进一步细化至4.2μm.合金织构随ΣΔε增加由基面织构转变为双峰织构,且织构强度增加.ΣΔε=0.66时,多向锻造Mg-8Gd-1Er-0.5Zr合金的抗拉强度、屈服强度和延伸率分别达到295 MPa、252 MPa和13.8%,比固溶态分别提高了80%、157%和13.1%.  相似文献   

19.
利用固相再生技术回收利用AZ91D镁合金屑,具体工艺为先冷压再热挤。结果表明:制备的AZ91D镁合金具有较好的力学性能且晶粒明显细化。在热挤出过程中发生了动态再结晶,且动态再结晶组织受到热挤温度和应变速率的影响,在300-350 °C下基面滑移和孪晶协调变形导致动态再结晶晶粒产生,形成"项链"组织;在 350-400 °C下位错的交滑移控制动态再结晶形核;高于400 °C时位错攀移控制了整个动态再结晶过程,形成均匀的再结晶组织。随着应变速率增加AZ91D镁合金力学性能增大,改善了材料的力学性能,但应变速率过大,制备试样表面出现裂纹,影响材料的力学性能。  相似文献   

20.
为了考察轧制工艺参数对板材显微组织和力学性能的影响,通过不同温度和轧制变形量的热轧工艺得到具有不同晶粒尺寸、基面织构强度和孪晶类型的AZ31镁合金轧制板材。拉伸孪晶、压缩孪晶和双孪晶的体积分数与AZ31镁合金轧制板材的晶粒尺寸有关。当轧制温度为523 K、轧制变形量为10%时轧制得到的板材,三种类型孪晶的体积分数最高,此时晶粒尺寸最大。在轧制温度分别为523和473 K时,板材发生完全动态再结晶的临界变形量分别为30%和40%。拉伸实验结果表明:随着轧制变形量的增加,在第一阶段,轧制后板材屈服强度的提高主要依赖于晶粒细化强化和织构强化;当晶粒尺寸随变形量的增加不再发生明显的细化时,板材的屈服强度主要受织构弱化的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号