首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用X射线衍射、光学显微镜、扫描电镜和拉伸测试研究Sn含量对铸态和挤压态Mg-8Li-3Al-(1,2,3)Sn(质量分数,%)合金显微组织和拉伸性能的影响。研究发现,铸态Mg-8Li-3Al-(1,2,3)Sn合金由α-Mg+β-Li双相基体、MgLiAl_2相和Li_2MgSn相组成。Sn含量的增加引起α-Mg枝晶细化和Li_2MgSn相含量增加。热挤压过程中,β-Li相发生完全动态再结晶,而α-Mg相发生不完全动态再结晶。随Sn含量增加,α-Mg相再结晶体积分数增加而再结晶晶粒平均尺寸减小。Sn含量的增加能够提高铸态Mg-8Li-3Al-(1,2,3)Sn合金的强度,但对塑性不利。热挤压使Mg-8Li-3Al-(1,2,3)Sn合金的拉伸性能明显提高,Mg-8Li-3Al-2Sn合金表现出最高的拉伸性能。  相似文献   

2.
采用OM、SEM、EDS、TEM和SAED等技术研究了Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr合金在铸态、时效态及固溶态的显微组织变化。结果表明,与铸态合金显微组织相比,时效态合金析出相更加细小弥散;铸态合金析出相有α-Mg、Mg5Gd相和Mg24Y5相,固溶态有α-Mg、Mg3Gd相和Mg24Y5相,时效态有α-Mg,Mg41Sm5,β'相。β'相形态为多个纺锤形相联结而成,相互夹角呈120°,具有周期结构。  相似文献   

3.
Mg-2Nd合金的组织与力学性能   总被引:1,自引:0,他引:1  
在铸钢坩锅中熔炼制备了Mg-2Nd二元镁合金,试样经不同热处理工艺处理后,测试合金的室温拉伸性能,采用光学显微镜(OM)、扫描电镜(SEM)及透射电镜(TEM)观察合金的显微组织,通过X射线衍射法(XRD)和能谱分析(XEDS)及选区电子衍射花样进行合金中的物相鉴别和微观成分分析。结果表明:Mg-2Nd合金的铸态组织由α-Mg基体和呈离异共晶形貌的Mg12Nd相组成;热挤压后,Mg12Nd相沿挤压方向呈纤维或颗粒状分布;挤压过程中发生动态再结晶,合金的抗拉强度(σb)由铸态的148.8 MPa提高到挤压态的210.2 MPa,伸长率(δ)由铸态的2.8%提高到挤压态的19.9%;热挤压和热轧成形的Mg-2Nd合金,直接时效T5(extruded、rolled)处理能产生形变强化和时效硬化双重作用,其中T5(rolled)态合金σb高达276.4 MPa,δ较热轧态提高了64%;T5(rolled)态组织中出现了β′和β沉淀,尺度均在50 nm左右,对合金产生了明显的时效强化作用。  相似文献   

4.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}<10 1 0>织构,而bccβ-Li相中则形成{110}<101>织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

5.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}10 1 0织构,而bccβ-Li相中则形成{110}101织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

6.
研究了挤压工艺参数(挤压温度、挤压比)对Mg-Sr-Y中间合金组织和性能的影响。结果表明:Mg-Sr-Y中间合金的铸态组织是由树枝晶状的基体相α-Mg、沿晶分布的网状共晶组织(Mg17Sr2+Mg25Y4)组成;热挤压后合金的晶粒明显细化,树枝晶和网状组织被打碎,晶粒大小和合金中析出相的分布更均匀。同时挤压后合金的硬度显著提高,力学性能明显改善,形变强化效果较为显著,其强化效果与挤压温度和挤压比有关。挤压温度越高,挤压比越大,则强化效果越显著。  相似文献   

7.
AM60镁合金大气腐蚀及动力学分析   总被引:1,自引:0,他引:1  
研究了铸态和挤压态AM60镁合金在太原地区的大气腐蚀行为。试验结果表明铸态合金的腐蚀速率高于挤压态合金。铸态合金中的共晶组织比α-Mg更具耐大气腐蚀能力,但是这导致了共晶相周围的α-Mg相腐蚀严重,且腐蚀产物膜也不均匀,保护性差。挤压态合金的最大腐蚀深度要远小于铸态合金。挤压态合金的显微组织比铸态更加均匀,而且不含有共晶组织,导致挤压态合金表面的腐蚀产物膜更加致密也更具有保护性。挤压变形不会引起AM60镁合金大气腐蚀性能的下降。  相似文献   

8.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

9.
为改善医用镁合金微观组织特征与降解行为,采用挤压形变工艺改变医用镁合金的晶粒尺寸特征及析出相/金属间化合物尺寸、分布规律,探究了挤压态医用Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金微观结构特征及降解行为。结果表明:不同的热挤压变形并没有改变Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金中第二相的类型,但改变了第二相的分布和形貌。Mg-2Zn-0.5Gd-1Y-0.5Mn镁合金的成分主为α-Mg和W-Mg3Y2Zn3。电化学测试结果表明,铸态、挤压370℃和挤压390℃合金腐蚀电流密度分别为2.498、3.656、1.012μA·cm-2。这是由于铸态组织中析出相/金属间化合物呈带状分布在基体中,可作为微阴极形成电偶腐蚀位点,加速合金腐蚀速率。合金在370℃挤压时,由于实际温度较低,部分粗化相未能充分溶解到α-Mg基体中,随着析出相数量增加及分布混乱无序,微阴极面积比例增大,进而导致腐蚀速率加剧。而390℃挤压态镁合金的挤压速度快、耗散行为慢,且铸锭与挤压机间摩擦强烈,已发生充分动态再结晶行为...  相似文献   

10.
制备了3种不同成分的Mg-Gd-Y三元合金,并对其显微组织和力学性能进行了研究.结果表明,Mg-6Gd-(2-4)Y三元合金的铸态组织由α-Mg和呈现典型的网状共晶形貌的Mg24(GdY)5相组成,其体积分数随Y含量的增加而增大.热挤压过程中Mg24(GdY)s相破碎,呈颗粒状沿挤压方向排列.挤压态合金在高温固溶处理后,大部分Mg24(GdY)5相溶入基体.挤压态合金在固溶+时效(T6)处理和直接时效(T5)处理过程中都形成了β沉淀.3种合金中Mg-6Gd-4Y合金在T5态的性能最好,强度高达350 MPa.  相似文献   

11.
The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11 %Zn- 0.9%Y, mass fraction) containing Mg3 YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-phase) is broken and almost distributes along the extrusion direction, and fine I-phase with nano-size is precipitated during the extrusion. The a-Mg matrix grains are refined due to recrystallization occuring during the hot extrusion. Some {1012} twins are observed in the extruded ZW1101 alloy. And {0002}(1010) fiber texture is formed in matrix alloys after hot extrusion. The extruded alloy exhibits high strength in combination with large elongation at room temperature. The strengthening mechanism of the as-extruded alloy was discussed.  相似文献   

12.
利用光学显微镜、X射线衍射和扫描电镜等对挤压态和时效态Mg-6Zn-1Mn-4Sn和Mg-6Zn-1Mn-4Sn-0.5Y镁合金的微观组织和力学性能进行研究。结果表明:与ZMT614镁合金相比,添加Y元素后,ZMT614-0.5Y晶粒得到细化,综合力学性能得到提高。Mg-6Zn-1Mn-4Sn-0.5Y合金的相组成为α-Mg、Mg Zn2、Mn、Mg2Sn和MgS n Y相。经过T6热处理后,合金的抗拉强度和屈服强度明显得到提高,伸长率明显被降低。理论计算表明,在挤压态合金中,细晶强化和固溶强化产生重要的作用,而在T6热处理态合金中,析出强化产生决定作用。  相似文献   

13.
The Mg–9Al–5Sn-xSb(x=0.0,0.3,0.6,1.0,1.5 wt%) alloys were prepared by a simple alloying process followed by hot extrusion with an extrusion ratio of 28.2. The effects of Sb additions on the microstructure and mechanical properties of the Mg–9 Al–5 Sn alloys were investigated by optical microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer. The results indicated that the phases α-Mg matrix, Mg_2_Sn, Mg_3Sb_2 and Mg_17 Al_12 exist in the as-cast Sb-containing alloys. Sb addition results in the precipitation of Mg_3Sb_2. The dendritic size of these alloys decreases with the addition of Sb. Both their ultimate tensile strength and yield strength of extruded alloys increase, and their elongation decreases gradually with increasing the content of Sb. The better mechanical properties of the as-extruded alloys were achieved due to the refined grains and the formation of dispersive second phases Mg_3Sb_2.  相似文献   

14.
Mg–9Li–3Al–1.6Y alloys were prepared through mixture method. The microstructure, mechanical properties, and corrosion resistance of the as-cast and asextruded alloys were studied by optical microscopy(OM),scanning electronic microscopy(SEM), X-ray diffraction(XRD), mechanical properties testing, and electrochemical measurement. The as-cast Mg–9Li–3Al–1.6Y alloy with the average grain size of 325 lm is composed of b-Li matrix, block a-Mg, and granule Al_2Y phases. After extrusion, the grain size of the as-cast alloy is obviously refined and reaches to 75 lm; the strength and elongation of the extruded alloy are enhanced by 17.20 % and49.45 %, respectively, owing to their fine microstructure and reduction of casting defects. The as-extruded alloy shows better corrosion resistance compared to the as-cast one, which may be related to the low stored energy and dislocation density in the extruded alloy, also the homogenization treatment before extrusion.  相似文献   

15.
通过金属模铸、热挤压和时效处理(T5)工艺过程制备出高强Mg-7Gd-4Y-1.6Zn-0.5Zr合金,并利用光学显微镜、XRD、SEM及TEM分析研究Mg合金不同状态下的显微组织和力学性能。结果表明:Mg-7Gd-4Y-1.6Zn-0.5Zr合金的铸态组织主要由α-Mg基体和沿晶界分布的片层状第二相Mg12Zn(Gd,Y)组成,经过热挤压变形后,合金晶粒显著细化,时效处理过程中Mg12Zn(Gd,Y)相上析出少量细小的颗粒状Mg3Zn3(Gd,Y)2相。时效态合金的抗拉强度、屈服强度和伸长率分别达到446 MPa、399 MPa和6.1%,其强化方式主要为细晶强化和第二相强化。  相似文献   

16.
The microstructure, texture, residual stress, and tensile properties of Mg–6 Zn–2 Y–1 La–0.5 Zr(wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refi nement due to dynamic recrystallization(DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a signifi cant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.  相似文献   

17.
The microstructure and mechanical properties of Mg-xSn(x=3,7 and 14,mass fraction,%) alloys extruded indirectly at 300℃ were investigated by means of optical microscopy,scanning electron microscopy and tensile test.The grain size of theα-Mg matrix decreases from 220,160 and 93μm after the homogenization treatment to 28,3 and 16μm in the three alloys after extrusion,respectively.The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy.At the same time,the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in theα-Mg matrix.In contrast,the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy.The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest,i.e.,255 MPa,increased by 120%as compared with that of as-cast samples.  相似文献   

18.
The Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy ingot and sheet were prepared by casting and hot extrusion techniques,and the microstructure,age hardening behavior and mechanical properties were investigated.The results show that the as-cast alloy mainly containsα-Mg solid solution and compounds of Mg5RE and Mg24RE5(RE=Gd,Y and Nd)phases.The grain size is refined after hot extrusion,and the Mg5RE and Mg24RE5 compounds are broken during the extrusion process.The extruded alloy exhibits remarkable age hardening response and excellent mechanical properties in the peak-aging state.The ultimate tensile strength,yield strength and elongation are 310 MPa,201 MPa and 5.8%at room temperature,and 173 MPa,133 MPa and 25.0%at 300℃,respectively.  相似文献   

19.
采用X射线衍射仪(XRD)、扫描电镜(SEM)和光学显微镜(OM)分别研究Mg-5Sn-xSi-0.5Sr(x=1,2)和Mg-5Sn-ySi-2Sr(y=1,2)合金的相组成和显微组织,采用力学性能试验机测定合金的拉伸性能。结果表明:Mg-Sn-Si-Sr系合金组织由α-Mg、MgSnSr、Mg2Sn、Mg2Si相所组成。Mg2Si相含量随Si元素的增加而增加,加入Sr元素会促进MgSnSr相的形成,抑制相界上Mg2Sn相的析出。Sn和Sr均能够细化Mg2Si相。当Sr含量由0.5%提高到2%(质量分数)后Mg2Si和Mg2Sn相均能得到显著细化,从而显著提高合金的抗拉强度与屈服强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号