首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铬酸钠碱性液中加石灰除钒   总被引:1,自引:0,他引:1  
通过计算反应Gibbs自由能和平衡溶解度对铬酸钠碱性液添加石灰除钒过程进行理论分析,结合红外光谱研究了含钒溶液的结构变化,研究添加石灰除钒时各因素的影响规律.结果表明:在298~373 K的范围内,体系中各离子与氧化钙生成相应钙盐的反应自由能绝对值由大到小的顺序为VO3-、CO32-、SO42-、VO43-、CrO42-;同时,各钙盐间可能存在相互转化,溶液中CO32-能分解CaCrO4和Ca3(VO4)2等钙盐,VO43-能分解CaCrO4.除钒过程中除生成Ca3(VO4)2和Ca2V2O7外,还能生成CaCO3、CaCrO4、CaSO4·nH2O等化合物,这是由于石灰加入量过多所致.溶液结构分析结果表明:随着pH值从13降到9左右,钒酸根由VO43-转化成VO43-和V2O74-共存的结构.除钒实验结果表明:提高溶液pH值、增大n(CaO )/n(V2O5)或加入高活性石灰乳均可提高除钒率,而溶液中CO32-的存在明显降低除钒率;加入理论用量3倍的石灰,溶液pH值降全10左右时,除钒率可达到85%,相对于工业除钒过程钒渣量减少88%左右.  相似文献   

2.
针对钨钼冶炼过程中钒难以深度除去的难题,借鉴海洋化学研究中的元素迁移规律,研究采用高价水合氧化物从钨钼冶炼过程中除钒。结果表明:从钨酸钠溶液中除钒,当铁盐添加量按Fe与V摩尔比为40、溶液pH值为8.5~9.0时,除钒率均能达到99%以上。而在相同条件下,当采用水合铝氧化物和锰氧化物作为除钒剂时,除钒率分别只能达到90%和60%,除钒效果明显不及采用铁盐时的。另外,用于在钼酸钠溶液除钒,当铁盐添加量按Fe与V摩尔比为40、溶液pH值7.5~10.8时,除钒率可达到97%,钼损失率小于5%。而在钼酸铵溶液中,当铁盐添加量按Fe与V摩尔比为10、溶液pH为8.6~9.0时,除钒率在96%以上,同时几乎没有钼损失;当铁盐添加量按Fe与V摩尔比增加到20时,除钒率均高于97%,钼损失率也小于2%。在钨钼冶炼过程中,铁盐可以作为一种有效的除钒试剂。  相似文献   

3.
将凝聚法和吸附法相结合,提出了一种从企业贵金属合金粉生产过程中形成的废水中分离回收贵金属(主要是银、钯)的新工艺。通过实验,研究分析了废料液的pH值、吸附时间、凝聚剂加入量、吸附剂加入量等操作条件对责金属回收效果的影响;找到了从废料液中回收贵金属的最佳工艺条件:pH值8~9;凝聚剂加入量与溶液的体积比为1:(2600~4000);吸附剂加入量与溶液的质量比为1:(20~40)。  相似文献   

4.
钨渣回收制备四氧化三锰新工艺   总被引:2,自引:0,他引:2  
研究从钨渣中回收锰的新工艺,通过钨渣的低温硫酸化焙烧、烧结块浸出、浸出液除杂、溶液中水解沉锰及氢氧化锰氧化获得Mn3O4粉末,采用SEM和XRD对产品粉末进行分析。结果表明:在浓硫酸过量150%、焙烧时间90 min、浸出温度98℃、浸出时间120 min的条件下,Mn浸出率达到88.9%。浸出液可以通过硫化物沉淀除重金属、硫酸复盐沉淀法深度净化除杂、中和水解除Fe,水解沉锰也有一定的净化作用,溶液pH值为6.56时,除铁率达到99.91%。净化液经水解沉锰后采用10%H2O2氧化,在氢氧化锰氧化过程中,溶液pH值对产物物相的影响较大;溶液pH值为8时在50℃沉锰,并以过量150%的H2O2氧化反应20min,获得粒度小于0.1μm的Mn3O4粉末。  相似文献   

5.
介绍了一种粗TiCl4铜丝塔除钒废水沉淀泥浆综合回收新工艺.该工艺由沉淀泥浆自氧化、碱洗脱氯、脱氯渣一次酸浸生产硫酸铜、一次酸浸渣苏打焙烧提钒和提钒渣二次酸浸5个主要工序组成.实验结果表明,粗TiCl4铜丝塔除钒废水沉淀泥浆在空气中能自氧化.沉淀泥浆在空气中堆放1个月,接近90%的金属铜变成CuCl2·2H2O,Cu2Cl(OH)3和Cu2(OH)3Cl;这些铜的氯氧化合物在碱性溶液中容易转化成Cu(OH)2;在控制液固比4-1,pH值为 11,温度为80 ℃的条件下搅拌1 h,转化率达96%.当酸浸液的pH值为2.0~2.5时,Fe、V、Ti等杂质留在渣中,浸出液蒸发浓缩至密度为1.38 g/cm3,冷却结晶得到的硫酸铜产品符合国标GB437-93的质量要求.酸浸渣按化学计量的2.5倍加苏打后在700 ℃焙烧3 h,焙烧后按液固比3-1加水在70 ℃搅拌1 h浸钒,水浸液按化学计量的3倍加氯化铵沉淀偏钒酸铵,偏钒酸铵在550 ℃热解2 h得到纯度为98.61%的V2O5.提钒渣再经二次酸浸.整个工艺过程铜和钒的总回收率分别达到98.63%和95.65%.  相似文献   

6.
本文针对目前钒铬渣中钒铬组元难以实现高效环保分离的研究现状,以钒铬渣为研究对象,碳酸锰为焙烧添加剂,通过钒铬渣碳酸锰焙烧−酸浸工艺实现了钒铬的高效分离。通过正交试验设计研究碳酸锰加入量、焙烧温度、恒温时间和升温速率对钒铬浸出行为的影响。结果表明:焙烧过程中钒尖晶石与碳酸锰的分解产物Mn_(2)O_(3)结合生成酸溶性的焦钒酸锰Mn_(2)V_(2)O_(7),随后在浸出过程中进入液相。而铬与铁结合生成稳定的固溶体(Fe_(0.6)Cr_(0.4))_(2)O_(3),浸出后转移入渣相。当碳酸锰加入量(以n(MnO)/n(V_(2)O_(5))计)为2.0,焙烧温度为850℃,恒温时间为2 h,升温速率为5℃/min时,钒浸出率达到最大值89.37%,铬浸出率仅为0.10%,实现钒的高效提取与钒铬分离。  相似文献   

7.
采用电解剥离-浸出正极材料、P204萃取除铝、秸秆硫酸浸出电池渣、草酸沉钴等工艺回收废旧锂电池中的钴。结果表明:经过20~30 min的电解剥离,实现了电池粉与铝箔的分离,钴的浸出率为50%,电流效率为70%;通过两次P204错流萃取除铝后,萃余液中Al3+含量可以降到0.4 mg/L,而钴却未损失;燕麦秸秆粉-硫酸浸出电池渣中钴的最佳工艺条件如下:硫酸2 mol/L、1 g电池渣加入0.5~0.7 g麦秆粉,固液比1:10,在80~90℃反应1~2 h,钴的浸出率达到98%以上;经三级浸出,COD的含量可降至1.3 g/L左右;草酸沉钴调节溶液温度为50℃,pH为2,保持n(2?Co)/n(2?42OC)=1,1 h后钴的一次沉淀率达到92%以上,滤液pH为0.2,其滤液可作为电解浸出液循环使用。  相似文献   

8.
湿法炼锌净化钴渣中富集钴的工艺研究   总被引:1,自引:0,他引:1  
在湿法炼锌工艺中,采用锑盐除钻法产出的净化钴渣经过酸性浸出后,锌、镉、钻等有价金属进入溶液,铜进入浸出渣。浸出液经过双氧水氧化除铁、低温锌粉置换除铜镉后,然后加入过硫酸钠,使溶液中的钴、铁、锰发生氧化,再用氢氧化钠溶液调整PH值在4.5~5.0之间,使溶液中的钻、铁、锰发生水解进入渣中。沉钴后液含Co≤5mg/l,避免了钴在湿法炼锌系统中的循环;钴的富集程度比较高,沉钴渣中钴的含量达到了20%以上,有利于钴的进一步精炼。  相似文献   

9.
中药渣和麦麸对模拟矿山酸性废水中Cu2+的吸附   总被引:1,自引:0,他引:1  
研究溶液pH值、Cu2+初始浓度、吸附时间、吸附剂投加量及温度对中药渣和麦麸吸附模拟矿山酸性废水中较高浓度Cu2+的影响。结果表明,随pH值的升高中药渣和麦麸对Cu2+的吸附量均增大;吸附剂最佳投加量为10 g/L;吸附过程更好地符合拟二级动力学模型;在pH值为3时,二者的最大吸附量分别为14.03和7.34 mg/g,吸附平衡符合Langmuir等温线方程;热力学研究表明,二者对Cu2+的吸附为非自发的放热反应。Zeta电位显示中药渣和麦麸在水溶液中均带负电,能够以静电引力吸附Cu2+;红外光谱分析表明,中药渣吸附Cu2+的官能团主要为羟基、羧基、酰胺基和酯基等,而麦麸吸附Cu2+的主要官能团为羟基、酰胺基和硅氧基等。  相似文献   

10.
采用HBL101萃取石煤高酸浸出液中的钒   总被引:3,自引:0,他引:3  
针对现行石煤提钒萃取工艺及研究现状,提出采用新型萃取剂HBL101从石煤高酸浸出料液中直接萃取钒的方案,考察料液的酸度、料液电位、萃取时间、相比以及温度对萃取率的影响,绘制HBL1010萃取等温曲线。结果表明:在料液酸度为1.458 mol/L,萃取温度为35~45℃,萃取时间为10min,相比O/A=1/1(油相与水相体积比)的条件下,钒的单级萃取率达到95%以上。三级逆流萃取实验结果显示,钒的萃取率达到99.7%以上。采用NaOH对负载有机相进行反萃,反萃液经调节pH后直接加入NH4Cl沉钒,得到的五氧化二钒纯度达到98.68%以上。  相似文献   

11.
研究了从亚氨基二乙酸浸出低品位氧化锌矿所得的Zn2+-Ida2-H2O溶液中锌的回收和浸出剂的再生.首先加入CaO调节溶液pH使锌以粗氧化锌形式加以回收,然后通入CO2气体使沉锌过程中所积累的大量钙离子以CaCO3形式脱除,同时实现浸出剂亚氨基二乙酸的再生.确定沉锌工艺条件如下:沉锌温度85℃、终点pH值10、陈化时间60 min;沉钙工艺条件如下:沉钙温度70℃、终点pH值8、CO2流量0.2 L/min.结果表明:浸出液按上述条件进行沉锌—沉钙—再浸出处理后,沉锌率为93.37%,沉钙率为97.88%,锌浸出率为78%;所得粗氧化锌含锌56.91%、铅3.40%,碳酸钙纯度大于97%.  相似文献   

12.
基于电解锰渣成分及水化硅酸钙(C-S-H)材料的结构特性,提出以电解锰渣为原料制备C-S-H材料,开发电解锰渣基C-S-H材料制备新技术。系统研究由电解锰渣制备C-S-H材料过程中反应pH值、反应温度、晶化时间等因素对合成C-S-H材料的矿相、微观结构和溶钙性能的影响。结果表明:C-S-H产品的种类、微观结构及其溶钙性能与反应工艺条件紧密相关,在优化工艺条件下(反应pH值12.0、反应温度100℃、晶化时间10h)制备所得的C-S-H材料结构酥松,其比表面积为205.0 m~2/g,总孔孔容为0.68 cm~3/g,且溶钙能力最强,溶出钙离子浓度为11.52 mg/L,适合作为吸附除磷材料在水处理过程中使用。  相似文献   

13.
采用共沉淀法合成Mg/Al摩尔比为2:1的层状双金属氢氧化物Mg/Al-LDH,并在500℃下煅烧6 h得到煅烧双金属氢氧化物Mg/Al-CLDH。研究Mg/Al-CLDH对钒酸根的吸附性能,探讨镁铝摩尔比、吸附剂用量、溶液初始浓度、时间和温度等因素对吸附效果的影响,并对其吸附过程的动力学和热力学过程进行研究。研究表明:Mg/Al-CLDH 对钒酸根的吸附效果很好。该吸附过程符合准一级动力学方程,平衡吸附等温线很好地符合Langmuir方程,并且Langmuir方程拟合常数高达0.999。通过热力学计算发现ΔGΘ为负值,ΔHΘ为正值,表明此吸附本质上是吸热自发过程。吸附机理研究表明此吸附主要是表面吸附。  相似文献   

14.
为实现工业钨渣资源化利用以及"以废治废"的目标,以硅藻土和工业钨渣为主要原料制备多孔陶粒,研究陶粒对离子型稀土矿区土壤淋滤液中氨氮的吸附去除规律。结果表明:近球状的硅藻土-钨渣基陶粒表面粗糙多孔,内部有大量贯穿孔洞与表面相连通,陶粒的主要物相组成含有MnFe_2O_4;在试验溶液初始pH范围内,当pH=5.68左右时,陶粒对溶液中氨氮的吸附量达最大;随着试验温度的升高,陶粒对氨氮的吸附去除量降低;在温度为303 K、陶粒投加量为0.5 g的条件下,陶粒对氨氮的饱和吸附量为1.60 mg/g;陶粒对氨氮的等温吸附符合Langmuir模型和Freundlich模型,吸附动力学符合准二级动力学模型;据此可推断,对于实际稀土矿区土壤的氨氮淋滤液,所制备陶粒可有效去除其中氨氮,吸附去除过程易于进行,且随温度的降低,其对氨氮的去除量增大;在实际淋滤液的pH值存在范围内,当pH=5.68左右时,陶粒对淋滤液中氨氮的吸附去除量将达到最大值。  相似文献   

15.
该发明公开了一种石煤湿法提钒工艺,它是将石煤经破碎球磨过筛、配料(加入添加剂)、酸浸、氧化、离子交换、沉钒、煅烧等工序生产五氧化二钒产品。  相似文献   

16.
KOH亚熔盐中钒渣的溶出行为   总被引:1,自引:0,他引:1  
对钒渣在KOH亚熔盐体系中的分解动力学进行研究,考察反应温度、碱矿质量比、粒度、气流量等工艺参数对钒渣分解过程的影响,获得最优工艺参数,并对反应机理进行探讨。结果表明,反应温度是最重要的影响因素;钒渣最优浸出条件如下:在反应温度为180℃,碱矿比4:1,KOH碱浓度75%,搅拌速率700 r/min,反应时间300 min,常压通氧气流量为1 L/min的反应条件下,最终钒、铬的浸出率分别达到95%和90%以上。钒渣在KOH亚熔盐介质中氧化分解遵循缩核模型,并主要受内扩散控制,钒和铬分解的表观活化能分别为40.54和50.27 kJ/mol,钒铬尖晶石的氧化以铁橄榄石、石英相的氧化分解为前提。  相似文献   

17.
在湿法炼锌工艺中,采用锑盐除钴法产出的净化钴渣经过酸性浸出后,锌、镉、钴等有价金属进入溶液,铜进入浸出渣。浸出液经过双氧水氧化除铁、低温锌粉置换除铜后,用α-亚硝基-β-萘酚的碱性溶液进行沉钴,沉钴渣经过酸洗除杂后,进行氧化焙烧而得粗Co2O4。该工艺,经济效益明显。  相似文献   

18.
钼酸盐溶液离子交换钼钒分离机理   总被引:1,自引:0,他引:1  
对钼酸盐溶液离子交换钼钒分离机理进行研究.研究结果表明,在钼酸盐溶液中V2O5含量约为0.5 g/L,钒与钼在pH值为6.5~8.5的范围内分别以和的形态存在.由于强碱性阴离子交换树脂对的亲和力大于对的亲和力,在交换过程中优先被吸附,从而实现钼酸盐溶液中钼与钒的分离.在钼酸铵溶液中强碱性阴离子交换树脂的钒、钼分离系数为295.62,取工作穿透点为0.02 g/L V2O5,可确保流出液用硝酸酸沉得到的钼酸铵产品中钒的含量小于0.001 5%.  相似文献   

19.
赵芳霞  张振忠  郭世德 《铸造技术》2006,27(12):1311-1314
以氯化钯为催化剂,采用正交实验、TEM、XRD和粒度分析等手段,系统研究了纳米镍磷合金粉的化学镀法制备工艺。结果表明:反应温度、pH值、镍磷比、柠檬酸钠加入量、氯化钯加入量等制备工艺参数对镍磷合金粉产量都有一定影响,其显著性大小顺序为:反应温度>柠檬酸钠加入量>氯化钯加入量>pH值>镍磷比,上述因素对产量影响的规律不同。较优的制备工艺为:分散剂为OP-10,加入量0.004 g/L,反应温度为75℃,pH值为4;硫酸镍、次亚磷酸钠、柠檬酸钠、无水醋酸钠和氯化铅加入量分别为28、37.7、45、150、.001 g/L;在50 mL废镀液中加入浓度为0.1 g/L的催化剂氯化钯8 mL;制备镍磷合金粉的分散剂应选用加入量为0.004 g/L的OP-10。  相似文献   

20.
采用水热法合成纳米花状的β-CrOOH,并用于钒(V~(5+))的吸附分离。在碱性体系中,合成的β-CrOOH比表面积为174.882 m~2/g,孔体积为0.602 cm~3/g。在65℃、pH=4时,β-CrOOH对V~(5+)的最大吸附容量可达到32.66mg/g。吸附机理表明,β-CrOOH在吸附过程中其表面会释放出羟基以形成配位不饱和Cr~(6+)活性中心,溶液中的钒酸根(VO_4~(3+))单体通过钒氧双键(V=O)与不饱和的Cr~(6+)活性中心结合,形成内球型配位,从而吸附钒。在铬酸盐的清洁生产应用中,将β-CrOOH置于铬铁矿无钙焙烧中和液(Na_2CrO_4-NaVO_3-H_2O)中用来选择性分离V~(5+)离子。结果表明,适量的β-CrOOH能将铬中和液中91.57%的钒有效脱除掉,铬几乎无吸附,从而实现钒铬的有效分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号