首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Gleebe-1500D热模拟试验机对AZ31镁合金铸轧板和常规轧制板进行了等温拉仲试验,变形温度为150~400℃,应变速率为3X10-6~3×10-1 s-1.研究了AZ31镁合金铸轧板和常规轧制板在不同变形条件下的组织演变.结果表明,两种板低温变形后的组织主要包括被拉长和破碎的晶粒以及孪晶.随着变形温度的升高,AZ31镁合金开始发生动态再结晶.铸轧板高温低应变速率变形条件下晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板.再结晶晶粒尺寸和参数Z呈幂律关系.  相似文献   

2.
AZ31镁合金铸轧和常规轧制板的变形组织及形变特征   总被引:1,自引:1,他引:0  
在变形温度为150~400 ℃、应变速率为0.3~0.000 3 s~(-1)条件下,在Gleeble1500热模拟机上采用等温拉伸试验对AZ31镁合金铸轧和常规轧制板的高温塑性及组织演变进行研究.结果表明:两种AZ31镁合金板的峰值应力和峰值应变均随着变形温度的降低和应变速率的增加而逐渐增大.铸轧板的应变硬化指数和应变速率敏感系数均大于常规轧制板的.在高温低应变速率变形条件下,铸轧板的晶界滑移引起的空洞尺寸、体积分数和密度均大于常规轧制板的.低应变速率下拉伸变形后的动态再结晶晶粒尺寸随温度的升高逐渐增加;不同变形条件下铸轧板的晶粒尺寸均小于常规轧制板的;再结晶晶粒尺寸和Z参数呈幂律关系.  相似文献   

3.
以铸态AZ31B镁合金材料为基础,采用Gleeble-1500D热变形模拟试验机对铸态AZ31镁合金在250、300、350、400℃,应变速率0.005、0.05、0.5 s-1条件下的再结晶行为进行研究,建立了热变形方程,再结晶运动学模型、晶粒尺寸模型。结果表明:在较高温度或较低应变速率下可得到较为细小的晶粒,从而对减小晶界处的孪晶位错密度,为后期轧制铸轧镁板生产过程中降低边裂产生的概率提供依据。  相似文献   

4.
在轧制温度603~703 K、轧制压下量20%~40%、应变速率4~16 s-1下对AZ31镁合金进行轧制变形,研究轧制压下量、应变速率和变形温度对AZ31镁合金变形组织的影响,分析了镁合金的动态再结晶机制。结果表明:应变速率和变形温度不仅影响动态再结晶进行的程度,而且能够改变再结晶的方式或形核机制。当轧制应变速率= 13.9 s-1,变形温度T=603 K时,再结晶方式为孪生动态再结晶;变形温度升高到703 K时,沿晶界有链状新晶粒出现。当变形温度T= 673 K,应变速率= 11.35 s-1时,再结晶方式以孪生动态再结晶为主;应变速率降低到= 4 s-1时,再结晶方式以旋转动态再结晶为主。  相似文献   

5.
AZ31B镁合金铸轧板温热拉伸流变行为研究   总被引:2,自引:2,他引:0  
由于短流程、低能耗的铸轧镁合金板材生产技术的突破,镁合金铸轧产品深加工必将成为镁合金材料应用的一个新的重要趋势。为研究AZ31铸轧镁合金板材的成形性能,通过温热力学拉伸试验得到了在应变速率为0.001~1.000s-1,变形温度为473~623K条件下的力学性能。研究发现,铸轧镁合金在变形温度为573~623K高温区,低应变速率时流变应力呈幂指数关系;而在变形温度低于573K,高应变速率时流变应力呈指数关系。微观组织分析发现,变形过程中发生动态再结晶,且晶粒尺寸随变形温度的升高而减小。  相似文献   

6.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

7.
以多向锻造AZ31镁合金为板坯进行高应变速率轧制成形,研究轧制温度对板材组织与力学性能的影响。结果表明:镁合金高应变速率轧制成形前期,孪生作用增强,形成大量的■拉伸孪生和■二次孪生;变形后期,由于孪生诱发动态再结晶的作用,合金晶粒组织明显细化。在压下量为80%的高应变速率轧制下,轧制温度为250~400℃时,轧制板材组织均发生了完全再结晶,平均晶粒尺寸随着轧制温度的升高从6.97μm增加至8.13μm,但由于轧制板坯的初始晶粒尺寸较小,晶粒尺寸随着轧制温度的升高变化较小;轧制板材的抗拉强度和伸长率均高于315 MPa和25%,表明高应变速率轧制工艺可以在较宽的温度区间内制备力学性能稳定的镁合金板材。  相似文献   

8.
采用光学显微镜(OM)、硬度测试等手段研究了轧制温度和压下率对AZ31镁合金铸轧板材显微组织和硬度的影响。结果表明:轧制温度350℃和总压下率72%轧制的AZ31镁合金试样组织中有大量孪晶出现,细小的再结晶晶粒分布在孪晶内部和α相晶界处,将大尺寸晶粒分割成较小晶粒,未发生再结晶的晶粒明显发生扭曲变形,组织得到明显细化。在350~410℃,随着轧制温度的升高,AZ31镁合金试样平均晶粒尺寸逐渐增大,试样硬度逐渐降低。轧制温度350、380、410℃,总压下率72%时,试样的硬度分别为86.6、84.7、79.5HV。  相似文献   

9.
铸态AZ61镁合金热压缩变形组织变化   总被引:2,自引:1,他引:1  
利用Gleeble-1500对铸态AZ61镁合金在变形温度200~500℃,应变速率0.001~1s-1的条件下进行压缩变形;利用显微结构分析和硬度测试等研究不同变形条件下AZ61镁合金的组织和性能,引用Z值(Zener-Hollomon系数)研究温度和应变速率对AZ61镁合金组织的影响,建立再结晶晶粒尺寸与Z值之间的关系。结果表明:铸态AZ61镁合金在热变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且峰值应力降低,再结晶晶粒尺寸随温度升高而增大;随应变速率上升,峰值应力增大且峰值应力对应的应变量增大,再结晶晶粒尺寸减小;硬度大小的变化也与动态再结晶密切相关。  相似文献   

10.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

11.
用Geeble1500热模拟实验机模拟不同始轧温度、冷却强度以及变形量和应变速率下AZ31合金的铸轧行为.结果显示:AZ31镁合金铸轧组织对应变速率和变形量均具有较强的敏感性.当ε由0.005s-1增到0.1s-1时,铸轧组织的晶粒逐渐变小,同时晶界析出物减少.变形量ε由20%增加到50%时,晶粒组织细化明显.试验得出了AZ31镁合金连续铸轧工艺的边界工艺条件,在此条件下,获得铸轧板的力学性能如下:70 HV0.5,σb为210-240 MPa,σ0.2为180-200MPa,δ为3%-6%.  相似文献   

12.
在单向压缩热模拟试验机上对AZ31-1Sm合金在变形温度为300~450℃、应变速率为0.01~1 s-1条件下的热变形行为和微观组织进行研究。结果表明:AZ31-1Sm镁合金在热压缩变形时,流变应力随着应变速率的增大和变形温度的降低而增大;该合金的热压缩流变应力行为可用双曲正弦形式的本构方程来描述,在本实验条件下,AZ31-1Sm镁合金热热变形激活能Q为160.8 k J/mol。AZ31-1Sm易发生动态再结晶,在高变形温度和低应变速率条件下动态再结晶趋势明显,动态再结晶晶粒尺寸随着变形温度的增加和应变速率的降低而增大。  相似文献   

13.
铸态AZ31B镁合金热压缩实验研究   总被引:2,自引:1,他引:1  
研究了铸态AZ31B镁合金在温度280~440℃和应变速率10-3~10-1s-1范围内的变形规律.结果表明:铸态AZ31B镁合金在高温下表现出较低的流变应力.其真应力-真应变曲线表现出明显的动态再结晶特征.再结晶晶粒明显细化,晶粒尺寸随着温度或Z(Zener-Hollomon常数)值的下降而增大.在低应变速率下可以得到相对均匀的变形组织.  相似文献   

14.
为探索变形镁合金薄板的加工新方法,设计了工艺路线和工艺参数,采用混合气体保护措施,用水平式双辊连续铸轧法成功试制出6mm×600mm×(5000~)mm的AZ31B变形镁合金铸轧板。铸轧供坯轧制的薄板力学性能达到或接近于同规格的热(温)轧、挤压产品的水平。试验表明:用水平式双辊连续铸轧法生产变形镁合金的工艺是可行的。  相似文献   

15.
在压下量为10%~40%、轧制速度为0.1~0.8 m/s、初轧温度为250~400℃条件下对AZ31B镁合金进行轧制实验,对轧后镁板的微观组织和力学性能进行综合研究。引入Zener-Hollomon参数,综合考虑初轧温度T、变形速率ε,建立平均晶粒尺寸预测模型;对轧后镁板抗拉强度与平均晶粒尺寸关系进行非线性拟合解析,建立抗拉强度数学模型,基于上述模型建立AZ31B镁合金热轧后组织性能预测模型。结果表明,轧后镁板微观平均晶粒尺寸与宏观抗拉性能存在较强相关性,解析精确度取决于轧前工艺参数的制定,精确求解变形速率ε可有效提高晶粒尺寸及抗拉强度的预测精度;AZ31B镁合金热轧后组织性能预测模型既能指导热轧前设计最优的轧制制度,又能根据轧前工艺参数在线检测进行热轧后镁板组织及性能的综合评估。  相似文献   

16.
镁合金AZ31轧制板材的单向拉伸行为   总被引:1,自引:0,他引:1  
通过单向拉伸试验研究了AZ31镁合金轧制板在不同温度和应变速率下的力学性能。根据镁合金在50℃~400℃范围内的单向拉伸曲线分析结果,找出AZ31镁合金的抗拉强度、伸长率随变形温度、变形速度的变化规律。结果表明:AZ31镁合金轧制板的塑性随着应变速率的降低有明显提高;温度的升高可明显改善轧制板的塑性;当应变速率为1.5×10-2s-1、温度为400℃时,伸长率达到123.9%。  相似文献   

17.
半固态等温热处理AZ91D镁合金的显微组织及压缩变形行为   总被引:2,自引:1,他引:1  
研究了AZ91D镁合金半固态等温热处理后的组织及其压缩变形行为。结果表明,AZ91D镁合金经570℃×60min半固态等温热处理后,枝晶组织特征已不明显。此外,AZ91D镁合金经570℃×60min半固态等温热处理后,半固态压缩应力在压缩应变近似为0.025时达到最大值,然后随着压缩应变的增加而逐渐减小,最后几乎保持不变;进一步,其半固态压缩变形应力还随着变形温度降低或变形速率增加而增加。  相似文献   

18.
采用Gleeble-3800热模拟软件对退火后的AZ31镁合金的热塑性变形行为和组织演化进行研究。AZ31镁合金压缩温度为100~400℃,应变速率分别为0.001、0.1、10 s~(-1),压缩变形量为50%。研究了变形温度和应变速率对AZ31镁合金变形行为的影响。分析了镁合金的组织演化和断口形貌。结果表明,AZ31镁合金的最大应力随应变速率的增大而增大,随温度的升高而减小。在较低温度(100℃)和应变速率(0.001 s~(-1))下,组织是不均匀的,由细晶粒和粗晶粒以及一些孪晶组成。将温度提高到200℃,微观组织内大部分晶粒非常细小,动态再结晶发生得更为完全。继续提高温度到300℃以及400℃,晶粒有粗化的趋势。随着应变速率增加到0.1 s~(-1)和10 s~(-1),动态再结晶在300℃完全发生。  相似文献   

19.
轧制及退火处理对铸轧态AZ31镁合金组织的影响   总被引:2,自引:0,他引:2  
利用金相显微镜、SEM及TEM对铸轧态AZ31镁合金在不同轧制及退火状态下的显微组织进行了研究.结果表明:铸轧态AZ31合金在420℃进行轧制变形时,合金以动态再结晶为主,且随着轧制变形量的增加.等轴再结晶晶粒尺寸逐渐变小.变形量为40%时.析出相得到破碎,晶界也变得更加清晰,此外,局部区域还出现了等轴再结晶晶粒;当变形量增大到90%时,合金以细小的等轴再结晶晶粒为主,晶粒尺寸约为10μm,且TEM观察可知合金基体内分布有较多细小的析出相,部分粗大再结晶晶粒边界附近还分布有一些由于动态再结晶而形成的细小晶粒.铸轧态AZ31合金在420℃轧制变形90%后再进行不同温度的退火,可知随温度升高再结晶晶粒长大明显,到450℃退火时,晶粒长大到20~30μm,对此退火样进行300℃温轧,基体内出现大量的孪晶和亚晶组织.  相似文献   

20.
用热模拟机对AZ61镁合金在150-400℃、0.01~10s^-1条件下进行压缩变形;利用现代冶金分析、硬度测试及扫描电镜等研究不同变形条件下AZ61镁合金的组织与性能。结果表明:AZ61镁合金压缩变形时表现出动态再结晶特征,随温度上升,再结晶容易发生且应力峰降低,再结晶晶粒变大;随应变速率上升,发生再结晶转变的临界应变增大且再结晶晶粒尺寸减小;同时在实验温度范围内,合金塑性随变形温度上升有所改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号