首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梁尤轩  赵斌  姜川  杨俊和 《化工进展》2014,33(6):1491-1497
垂直碳纳米管(VACNT)阵列由于具有良好的排列、优异的导电导热能力、高比表面积、高纯度等优点而得到广泛应用。本文概述了用于碳纳米管阵列生长的热化学气相沉积(CVD)制备方法的最新进展,重点阐述了CVD法生长碳纳米管阵列的动力学与生长终止机理,指出CVD过程中的催化剂形貌演化是引发碳纳米管阵列生长停止的重要原因。介绍了人们通过生长条件控制与催化剂设计等方法调控碳纳米管阵列结构(包括管壁数、管径和密度)方面取得的进展,指出碳纳米管阵列的大批量制备及结构参数的精确调控是未来发展的 重点。  相似文献   

2.
P. Vinten  J. Bond  P. Marshall  J. Lefebvre  P. Finnie 《Carbon》2011,49(15):4972-4981
Carbon nanotube forests are arrays of roughly vertically aligned nanotubes. Under certain growth conditions, these forests can show a growth instability that gives rise to periodic ripples that are coherent over a forest-sized scale. Previously, we showed that the uniformity and synchronization of the ripples is sufficient for them to behave as diffraction gratings for visible light. Here, we identify the conditions that reproducibly promote the formation of these ripples. We investigate the formation mechanism via ex situ scanning electron microscopy and in situ optical imaging. While the rippling amplitude varies appreciably, the rippling wavelength varies very little and can be estimated from simple mechanical considerations. We provide evidence that the rippling is a consequence of cohesive interactions between nanotubes and the build up of strain, driven by a non-uniform growth rate. The origin of the non-uniform growth rate is explained.  相似文献   

3.
Aligned multi-walled carbon nanotube forests were grown by chemical vapour deposition on carbon fibers by the use of an amorphous Si interface. The Si layer creates a barrier, hindering the Fe catalyst diffusion into the carbon fibers. This method provides a way to tailor the thermal, electrical and mechanical properties of the fiber-resin interface of a polymer composite.  相似文献   

4.
We report an effect in vertically-aligned carbon nanotube growth in which small catalyst features in proximity to large features show an enhanced growth rate. We apply this so-called “synergetic growth” effect in micrometer-scale patterns to produce vertical-like growth horizontally. This approach enables carbon nanotube integration into device applications requiring a fair degree of carbon nanotube alignment. The synergetic growth effect corroborates growth mechanisms describing carbon nanotube growth as a more complex process than elemental carbon supersaturating metal catalyst.  相似文献   

5.
Hisashi Sugime 《Carbon》2010,48(8):2203-882
Millimeter-tall vertically-aligned carbon nanotubes (VA-CNTs) were grown from ethanol under ambient pressure by Co-catalyzed chemical vapor deposition (CVD), with systematic optimization of the CVD temperature and catalytic conditions using combinatorial catalyst libraries. We investigated the use of both aluminum oxide and silicon oxide as underlayers for the Co catalyst and found that VA-CNTs grew to millimeter heights in 15-30 min when the pyrolysis of ethanol was carried out at high temperatures (?850 °C) and long residence times (?10 s). Thick Co catalytic layers (?1.3 nm) produced (sub)millimeter-tall multi-walled VA-CNTs on both the aluminum oxide and silicon oxide underlayers. However, thin Co catalytic layers (0.62-1.0 nm) produced (sub)millimeter-tall VA-CNTs, which consisted mainly of single-walled CNTs, only on the aluminum oxide underlayers. Stripe patterns were found in the VA-CNTs near the substrate on both aluminum oxide and silicon oxide, indicating some instability prior to growth termination. The possible roles of aluminum oxide in growing millimeter-tall single-walled VA-CNTs were discussed.  相似文献   

6.
Growing carbon nanotube (CNT) forests on metals for integrated circuits interconnections or active layers applications is currently a challenge. CNT forests easily develop on insulators but their growth on metallic substrates is subject to interdiffusion and wettability effects that hamper the formation of the catalyst nanoparticles. This paper reports the successful growth of dense CNT forests on some metallic layers (Mo, Ta, W, and Ir) in comparison to other metallic films (Au, Cu, and Ti) over which CNTs are hardly achieved. The CNT forests are grown by thermal decomposition of C2H2 diluted in NH3 and characterized by Raman spectroscopy and scanning electron microscopy. Stabilizing Al thin films placed between the metallic substrates and the Fe catalyst promote the formation of Fe nanoparticles. Metallic substrates, thickness of the Al stabilizer, and temperature and raise time during nanoparticles formation are all instrumental parameters in the growth and final structure of the CNT forests.  相似文献   

7.
Understanding the synthesis of directly spinnable carbon nanotube forests   总被引:1,自引:0,他引:1  
Chi P. Huynh 《Carbon》2010,48(4):1105-869
Carbon nanotube forests that can be spun directly from the growth substrate into pure, highly aligned webs, ribbons or yarn promise novel applications that capture the strength and other characteristics of this material. The precise conditions for high spinnability over a maximum proportion of the reactor space are extremely sensitive. The roles of catalyst, substrate, temperature, gas flow rates, reaction time with acetylene etc. were studied to identify and understand the key parameters and develop a robust, scalable process. Using a 44 mm (id) reactor, the optimum values for these variables were determined as comprising a 2.3 nm thick iron catalyst layer on a silicon substrate with 50 nm of thermal oxide; 670 °C running temperature; 650 sccm helium and 34 sccm acetylene for 20 min. The effects of deviating from these optima were explored and the role of amorphous carbon deposition clarified.  相似文献   

8.
We perform classical molecular dynamics simulations to investigate the mechanical compression effect on the thermal conductivity of the single-walled carbon nanotube (SWCNT) forest, in which SWCNTs are closely aligned and parallel with each other. We find that the thermal conductivity can be linearly enhanced by increasing compression before the buckling of SWCNT forests, but the thermal conductivity decreases quickly with further increasing compression after the forest is buckled. Our phonon mode analysis reveals that, before buckling, the smoothness of the inter-tube interface is maintained during compression, and the inter-tube van der Waals interaction is strengthened by the compression. Consequently, the twisting-like mode (good heat carrier) is well preserved and its group velocity is increased by increasing compression, resulting in the enhancement of the thermal conductivity. The buckling phenomenon changes the circular cross section of the SWCNT into ellipse, which causes effective roughness at the inter-tube interface for the twisting motion. As a result, in ellipse SWCNTs, the radial breathing mode (poor heat carrier) becomes the most favorable motion instead of the twisting-like mode and the group velocity of the twisting-like mode drops considerably, both of which lead to the quick decrease of the thermal conductivity with further increasing compression after buckling.  相似文献   

9.
Carbon nanotubes (CNTs) were grown directly on substrates by alcohol catalytic chemical vapor deposition using a Co-Mo binary catalyst. Optimum catalytic and reaction conditions were investigated using a combinatorial catalyst library. High catalytic activity areas on the substrate were identified by mapping the CNT yield against the orthogonal gradient thickness profiles of Co and Mo. The location of these areas shifted with changes in reaction temperature, ethanol pressure and ethanol flow rate. Vertically aligned single-walled CNT (SWCNT) forests grew in several areas to a maximum height of ca. 30 μm in 10 min. A pure Co catalyst yielded a vertically aligned SWCNT forest with a bimodal diameter distribution. The effects of Mo on the formation of catalyst nanoparticles and on the diameter distribution of SWCNTs are discussed and Mo as thin as a monolayer or thinner was found to suppress the broadening of SWCNT diameter distributions.  相似文献   

10.
Carbon nanotube (CNT) forests were obtained from liquefied petroleum gas (LPG) as the carbon source in the floating catalyst process. The CNTs obtained in the forest had a thinner diameter and lower growth rate than those obtained with other carbon sources, which was attributed to the existence of sulfur in the LPG. The use of unpurified LPG provides a controllable way to synthesize a CNT forest at low cost.  相似文献   

11.
Abadi PP  Hutchens SB  Greer JR  Cola BA  Graham S 《Nanoscale》2012,4(11):3373-3380
This study reports the mechanical response of distinct carbon nanotube (CNT) morphologies as revealed by flat punch in situ nanoindentation in a scanning electron microscope. We find that the location of incipient deformation varies significantly by changing the CNT growth parameters. The initial buckles formed close to the growth substrate in 70 and 190 μm tall CNT forests grown with low pressure chemical vapor deposition (LPCVD) and moved to ~100 μm above the growth substrate when the height increased to 280 μm. Change of the recipe from LPCVD to CVD at pressures near atmospheric changed the location of the initial buckling event from the bottom half to the top half of the CNT forest. Plasma pretreatment of the catalyst also resulted in a unique CNT forest morphology in which deformation started by bending and buckling of the CNT tips. We find that the vertical gradients in CNT morphology dictate the location of incipient buckling. These new insights are critical in the design of CNT forests for a variety of applications where mechanical contact is important.  相似文献   

12.
Michael J. Bronikowski 《Carbon》2006,44(13):2822-2832
Recent discovery of enhanced field emission current intensity from arrays of bundles of carbon nanotubes (CNT) has prompted this investigation of the growth of CNT bundle arrays by metal-catalyzed chemical vapor deposition (CVD), in order to understand and control the growth of these arrays. CNT bundle array growth has been characterized as a function of array geometric parameters: the CNT bundle diameter and inter-bundle spacing. We find that CNT bundle array growth varies significantly with bundle size and spacing, which we suggest is due to the formation of a volatile molecular byproduct of ethylene decomposition that enhances CNT growth in areas with high concentrations of metal catalyst. We have also studied and optimized CNT growth with respect to a variety of CVD process parameters, in order to control the length of the resultant CNT bundles. We find that the length of the CNT can be reliably controlled by varying either the reaction time or the gas pressure. Such control over CNT bundle length will be crucial in the incorporation of these bundle arrays into high-intensity electron field emission devices.  相似文献   

13.
This paper reports post-growth processing of vertically aligned carbon nanotube forests for the formation of high-aspect-ratio, three-dimensional microstructures in the material. High-frequency pulses of electrical discharge are generated to locally machine the nanotubes in order to create target shapes in a forest. Machining is performed in both dielectric oil and air. The optimal processing is demonstrated in air with a pulse voltage and peak current of 30 V and 60 mA, respectively, providing a discharge gap of ~ 10 μm. The minimized discharge energy and gap are shown to achieve an aspect ratio of 20 with the smallest feature of 5 μm in forests. Multilayer, three-dimensional geometries with vertical and angled surfaces are successfully obtained without disordering the vertical orientation of the nanotubes. Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used for the surface analysis of the micromachined forests, revealing the dependence of their surface characteristics on the discharge conditions.  相似文献   

14.
SiC-assisted growth of tubular graphenic cones (TGCs) with carbon nanotube tip is achieved with high yield in the microwave plasma chemical vapor deposition process. No pre-existing metal or semiconductor catalyst particles are required on the substrate prior to the deposition process. Instead, the in situ grown SiC crystallites serve as the catalyst for the growth of TGCs. Thanks to the easy formation of SiC on various substrates, the process is compatible with a wide range of substrates, i.e. Si, diamond, 2H–SiC, GaN, and SiO2, but not only limited to them. In addition to developing the approach, the mechanism for the formation of TGCs is also proposed. When Si is used as the substrate, the 3C–SiC crystallites grow epitaxially on the surface, which further initiate the epitaxial growth of graphene with its basal plane parallel to the {111} planes of 3C–SiC. The further expansion of graphene is constrained by the 3C–SiC crystallites, leading to the formation of curved graphene layers, i.e. onion-like or bowl-shaped graphene-based carbon. These curved graphene layers are believed to be the possible nucleation sites for the growth of TGCs. Inclusion of boron in the gas phase promotes the growth rates and the final yields of TGCs.  相似文献   

15.
16.
Xavier Lepró  Ray H. Baughman 《Carbon》2010,48(12):3621-3627
Towards the goal of providing a continuous process for the solid-state fabrication of carbon nanotube sheets and yarns from carbon nanotube forests, we report the growth of yarn-spinnable and sheet-drawable carbon nanotube forests on highly flexible stainless steel sheets, instead of the conventionally used silicon wafers. Sheets and yarns were fabricated from the 16 cm maximum demonstrated forest width, from both sides of a stainless steel sheet, and the catalyst layer was shown to be reusable, thereby decreasing the need for catalyst renewal during a proposed continuous or semi-continuous process where the stainless steel sheet serves as a moving belt to enable forest growth at one belt end and carbon nanotube yarn or sheet fabrication at an opposite belt end.  相似文献   

17.
We review our in-situ X-ray photoemission (XPS) and in-situ transmission electron microscopy studies which determined that the catalyst is in the metallic state for Fe, Co and Ni catalysts. We show that the existence of surface carbide phases in related catalytic reactions could account for the observation of carbide peaks in XPS. The observed catalytic activity of gold is discussed in terms of carbon solubility, reaction rates, and surface coordination numbers.  相似文献   

18.
Waviness is invariably present in vertically-aligned Carbon Nanotubes (CNTs) regardless of how controlled the fabrication process is. This study, using experiments and models, shows that such inherent waviness is the main mechanism by which the effective modulus of CNTs is reduced by several orders of magnitude. At this time, most studies have shown that the compliant mechanical response of the CNT forests under compressive loading is due to bending and buckling of CNTs as well as the variation of CNT density throughout the forest height. Subjecting CNT forests to tensile loads as well as to compressive loads, it is shown here that the high compliance of CNT forests is due to the inherent waviness of individual CNTs, and not necessarily due to bending and buckling of CNTs. The experimental findings are also supported through analytical models and numerical models that show that the CNT wavy geometry causes the CNTs to have 4–5 orders of magnitude greater compliance than a straight CNT.  相似文献   

19.
The mechanical behavior of carbon nanotube (CNT) forests soaked in three solvents – toluene, acetonitrile, and isopropanol – is examined. Effective stiffness of the structure is evaluated in the dry and wet condition by micro-indentation using a 100 μm flat punch. With soaking of CNT forests in solvents, the stiffness decreases and deformation mechanism changes from buckling concentrated close to the bottom of the CNT forest to a distribution of local buckles along the height and global buckling of the entire length of CNTs. We use molecular dynamics simulations to relate the experimental observations to the reduced mechanical support from neighbor CNTs due to a decreased magnitude of van der Waals (vdW) interactions in the presence of solvents. Toluene, which produces the lowest average measured stiffness between the three solvents, produces the lowest vdW forces between individual CNTs. Furthermore, wet–dry cycling of CNT forests shows the reversibility and repeatability of change of stiffness by immersing in solvents. The results show that soaking CNT forests in solvents could be useful for applications such as interface materials where lower stiffness of CNT forests are needed and applications such as energy absorbing materials in which re-setting of stiffness is required.  相似文献   

20.
Carbon nanotubes (CNTs) grown on substrate-bound catalysts by CVD are influenced by the catalyst, which changes over the course of the process. The evolution of the CNT growth is revealed by breaking the process into recycling increments and using the phenomenon of ‘direct spinnability’ as a target characteristic.Using acetylene alone, it was found that the first four cycles gave 100% regrowth in height and mass yield of CNTs, with both properties falling to around 20% on the 5th cycle. A decrease in nanotube diameter was observed whilst the areal density increased. With the addition of hydrogen a 100% regrowth for the second cycle was observed, followed by a decrease to around 55%, 18% and 11% in both height and yield for subsequent cycles. The diameter increased, whilst the areal density decreased in subsequent cycles.In the absence of hydrogen the CNTs have around seven walls, decreasing to about three by the seventh cycle. With hydrogen, CNTs have five or six walls for all cycles. Raman spectroscopy indicates an increase in disorder in later cycles. Spinnability is high for initial cycles but drops sharply on the fourth cycle, or third cycle with hydrogen, as the nanotube forest tortuosity markedly increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号